[1] Zhang G S,Xu D Y. Optimal scheme of quantum teleportation participated by generalized CHZ state [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2018, 35(5): 576-582(in Chinese). [2] Gramajo A L, Daniel D, María J S. Controlling entanglement in the interferometry of driven coupled flux qubits[C]. 28th International Conference on Low Temperature Physics, 2018. [3] Fröwis F, Dür W. Stability of encoded macroscopic quantum superpositions [J]. Physical Review A, 2012, 85(5): 23-29. [4] Ding D, Yan F L, Gao T. Preparation of km-photon concatenated Greenberger–Horne–Zeilinger states for observing distinctive quantum effects at macroscopic scales[J]. Journal of the Optical Society of America B Optical Physics, 2013, 30(11): 3075-3078. [5] Lu H, Chen L K, Liu C, et al. Experimental realization of a concatenated Greenberger-Horne-Zeilinger state for macroscopic quantum superpositions [J]. Nature Photonics, 2014, 8(5): 364-368. [6] Sheng Y B, Zhou L, Wang L, et al. Efficient entanglement concentration for quantum dot and optical microcavities systems[J]. Quantum Information Processing, 2012, 12(5): 1885-1895. [7] Sheng Y B, Zhou L. Two-step complete polarization logic Bell-state analysis[J]. Scientific Reports, 2015, 5(1): 34-53. [8] Zhou L, Sheng Y B. Complete logic Bell-state analysis assisted with photonic Faraday rotation[J]. Physical Review A, 2015, 92(4): 23-24. [9] Zhou L, Sheng Y B. Feasible logic Bell-state analysis with linear optics[J]. Scientific Reports, 2016, 6(2): 201-209. [10] Wu X D, Zhou L, Zhong W, et al. Purification of the concatenated Greenberger–Horne–Zeilinger state with linear optics[J]. Quantum Information Processing, 2018, 17(10): 255-257. [11] Qu C C, Zhou L, Sheng Y B. Entanglement concentration for concatenated Greenberger–Horne–Zeilinger state[J]. Quantum Information Processing, 2015, 14(11): 4131-4146. [12] Pan J, Zhou L, Gu S P, et al. Efficient entanglement concentration for concatenated Greenberger–Horne–Zeilinger state with the cross-Kerr nonlinearity[J]. Quantum Information Processing, 2016, 15(4): 1-19. [13] Sheng Y B, Zhou L. Entanglement analysis for macroscopic Schrödinger's Cat state[J]. Europhysics Letters, 2015, 109(4): 400-409. [14] Xiu X M , Li Q Y , Lin Y F , et al. One-photon controlled two-photon not gate contributed by weak cross-Kerr nonlinearities[J]. Optics Communications, 2017, 39(3): 173-177. [15] Simon M K. Probability Distributions Involving Gaussian Random Variables [M]. US: Springer, 2006. [16] Dong L , Wang S L , Cui C , et al. Polarization Toffoli gate assisted by multiple degrees of freedom[J]. Optics Letters, 2018, 43(19):4635-4638. [17] Nagayama K, Kakui M, Matsui M, et al. Ultra-low-loss (0.1484 dB/km) pure silica core fibre and extension of transmission distance [J]. Technical Report of Ieice Ocs, 2002, 102(20): 1168-1169. [18] Heo J, Hong C H, Yang H J, et al. Analysis of optical parity gates of generating Bell state for quantum information and secure quantum communication via weak cross-Kerr nonlinearity under decoherence effect[J]. Quantum Information Processing, 2017, 16(4): 110-130. [19] He B, Scherer A. Continuous-mode effects and photon-photon phase gate performance[J]. Physics, 2012, 85(3): 145-150. [20] He B, Lin Q, Simon C. Cross-Kerr nonlinearity between continuous-mode coherent states and single photons [J]. Physical Review A, 2011, 83(5): 053826. [21] Hamedi H R, Gharamaleki A H, Sahrai M. Colossal Kerr nonlinearity based on electromagnetically induced transparency in a five-level double-ladder atomic system [J]. Applied Optics, 2016, 55(22): 5892-5899. |