[1] Raether H. Surface Plasmons[M]. Berlin: Springer-Verlag, , 1988.
[2] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics [J]. Nature, 2003, 424: 824-830.
[3] Zayats A V, Smolyaninov I I, Maradudin A A. Nano-optics of surface plasmon polaritons [J]. Physics Report, 2005, 408: 131-314.
[4] Huber A, Ocelic N, Kazantsev D, et al. Near-field imaging of mid-infrared surface phonon polariton propagation [J]. Applied Physics Letters, 2005, 87: 081103.
[5] Passmore B S, Allen D G, Vangala S R, et al. Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb [J]. Optics Express, 2009, 17(12): 10223.
[6] DiPippo W, Lee B J, Park K. Design analysis of doped-silicon surface plasmon resonance immunosensors in mid-infrared range [J]. Optics Express, 2010, 18(18): 19396.
[7] Park M S, Bhattarai K, Kim D K, et al. Enhanced transmission due to antireflection coating layer at surface plasmon resonance wavelengths [J]. Optics Express, 2014, 22(24): 30161.
[8] Kotov O V, Lozovik Y E. Dielectric response and novel electromagnetic modes in three-dimensional Dirac semimetal films [J]. Physical Review B, 2016, 93: 235417.
[9] Yakimov A I, Kirienko V V, Armbrister V A, et al. Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface [J]. Applied Physics Letters, 2018, 112(17): 171107.
[10] Maier S A, Andrews S R. Terahertz pulse propagation using plasmon-polariton-like surface modes on structured conductive surfaces [J]. Applied Physics Letters, 2006, 88: 251120.
[11] Zhang X F, Shen L F, Ran L X. Low-frequency surface plasmon polaritons propagating along a metal film with periodic cut-through slits in symmetric or asymmetric environments [J]. Journal of Applied Physics, 2009, 105: 013704.
[12] Gao X, Shi J H, Shen X P, et al. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies [J]. Applied Physics Letters, 2013, 102: 151912.
[13] Liao Z, Luo Y, Fernandez-Dominguez A I, et al. High-order localized spoof surface plasmon resonances and experimental verifications [J]. Scientific Reports, 2015, 5: 9590.
[14] Pendry J B, Martin-Moreno L, Garcia-Vidal F J. Mimicking surface plasomns with structured surface [J]. Science, 2004, 305 (5685): 847-848.
[15] Maier S A, Andrews S R, Martin-Moreno L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires [J]. Physical Review Letters, 2006, 97(17): 176805.
[16] Hibbins A P, Evans B R, Sambles J R. Experimental verification of designer surface plasmons [J]. Science, 2005, 308(5722): 670-672.
[17] Williams C R, Andrews S R, Maier S A, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces [J]. Nature Photonics, 2008, 2(3): 175-179.
[18] Shen L F,Chen X D, Zhong Y, et al. Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires [J]. Physical Review B, 2008, 77(7): 075408.
[19] Shen L F,Chen X D,Yang T J. Terahertz surface plasmon polaritons on periodically corrugated metal surfaces [J]. Optics Express, 2008, 16(5): 3326-3333.
[20] Zhu F M, Zhang Y Y, Shen L F, et al. Subwavelength guiding of terahertz radiation by shallowly corrugated metal surfaces [J]. Journal of Electromagnetic Waves and Application, 2012, 26: 120-129.
[21] Alexandre V, Grimault A S, Macías D, et al. Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method [J]. Physical Review B, 2005, 71: 085416.
[22] Kong F M, Li K, Wu B I, et al. Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries [J]. Progress in Electromagnetics Research, 2007, 76: 449-466.
[23] Kong J A. Electromagnetic Wave Theory [M] . Cambridge, Massachusetts: EMW Publishing, 2005.
|