[1] Bouwmeester D, Ekert A, Zeilinger A. The Physics of Quantum Information [M]. Berlin Heidelberg: Springer, 2000.
[2] Estève D, Raimond J M, Dalibard J. Quantum Entanglement and Information Processing [M]. London: Cambridge University Press, 2004.
[3] Schrödinger E. Die gegenwärtige situation in der quantenmechanik (1935) [C]. Baumann K, Sexl RU, eds. Die Deutungen der Quantentheorie. Wiesbaden: Vieweg+Teubner Verlag, 1984: 98-129.
[4] Brown K R, Ospelkaus C, Colombe Y, et al. Coupled quantized mechanical oscillators [J]. Nature , 2011, 471(7337): 196-199.
[5] Khalili F, Danilishin S, Miao H, et al. Preparing a mechanical oscillator in non-Gaussian quantum states [J]. Physical Review Letters, 2010, 105(7): 070403.
[6] Liao J Q, Law C K. Parametric generation of quadrature squeezing of mirrors in cavity optomechanics [J]. Physical Review A, 2011, 83(3): 033820.
[7] Rocheleau T, Ndukum T, Macklin C, et al. Preparation and detection of a mechanical resonator near the ground state of motion [J]. Nature, 2010, 463(7277): 72-75.
[8] Zhang Y B, Liu J H, Yu Y F, et al. Entangling two oscillating mirrors in an optomechanical system via a flying atom [J]. Chinese Physics B, 2018, 27(7): 074209.
[9] Zhao C, Ju L, Miao H, et al. Three-mode optoacoustic parametric amplifier: A tool for macroscopic quantum experiments [J]. Physical Review Letters, 2009, 102(24): 243902.
[10] Joshi C, Larson J, Jonson M, et al. Entanglement of distant optomechanical systems [J]. Physical Review A, 2012, 85(3): 033805.
[11] Vitali D, Gigan S, Ferreira A, et al. Optomechanical entanglement between a movable mirror and a cavity field [J]. Physical Review Letters, 2007, 98(3): 030405.
[12] Zhang C Y, Li H, Pan G X, et al. Entanglement of movable mirror and cavity field enhanced by an optical parametric amplifier [J]. Chinese Physics B , 2016, 25(7): 74202-074202.
[13] Zhang J, Peng K, Braunstein S L. Quantum-state transfer from light to macroscopic oscillators [J]. Physical Review A, 2003, 68(1): 013808.
[14] Ian H, Gong Z R, Liu Y X, et al. Cavity optomechanical coupling assisted by an atomic gas [J]. Physical Review A, 2008, 78(1): 013824.
[15] Zhou L, Han Y, Jing J, et al. Entanglement of nanomechanical oscillators and two-mode fields induced by atomic coherence [J]. Physical Review A, 2011, 83(5): 052117.
[16] Pan G X, Xiao R J, Zhou L. Entanglement of optical and mechanical modes enhanced in distant optomechanical systems by atomic coherence [J]. International Journal of Theoretical Physics, 2016, 55: 329-337.
[17] Scully M O, Zubairy M S. Quantum Optics [M]. London: Cambridge University Press, 1997.
[18] DeJesus E X, Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations [J]. Physical Review A, 1987, 35(12): 5288-5290.
[19] Genes C, Mari A, Tombesi P, et al. Robust entanglement of a micromechanical resonator with output optical fields [J]. Physical Review A, 2008, 78(3): 032316.
[20] Adesso G, Serafini A, Illuminati F. Extremal entanglement and mixedness in continuous variable systems [J]. Physical Review A, 2004, 70(2): 022318.
[21] Simon R. Peres-Horodecki separability criterion for continuous variable systems [J]. Physical Review Letters, 2000, 84(12): 2726-2729.
[22] Vidal G, Werner R F. Computable measure of entanglement [J]. Physical Review A, 2002, 65(3): 032314. |