[1] Lo H K, Chau H F. Unconditional security of quantum key distribution over arbitrarily long distances[J]. Science, 1999, 283(5410): 2050-2056.
[2] Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol[J]. Physical Review Letters, 2000, 85(2): 441-444.
[3] Wang X B. Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors[J]. Physical Review A, 2013, 87(1): 012320.
[4] Yu Hao, Zhang Ying, Zhuo Wenhe,et al. Quantum network based on quantum teleportation and MDI protocol[J]. Chinese Journal of Quantum Electronics(量子电子学报), 2019, 36(4): 450-455 (in Chinese).
[5] Gao Zhongling, Zhao Shengmei, Ma Yuanyuan,et al International business data transmission scheme based on MDI-QKD protocol[J]. Chinese Journal of Quantum Electronics(量子电子学报, 2019, 36(1): 34-39 (in Chinese).
[6] Yu Hao, Jia Wei, Zan Jiye, et al. A novel BB84-based quantum secret sharing with decoy states [J]. Chinese Journal of Quantum Electronics(量子电子学报), 2017, 34(1): 46-53 (in Chinese)
[7] Mao Q P, Wang L, Zhao S M. Efficient quantum key distribution based on hybrid degrees of freedom[J]. Laser Physics, 2019, 29(8): 085201.
[8] Wang X B. Beating the photon-number-splitting attack in practical quantum cryptography[J]. Physical Review Letters, 2005, 94: 230503.
[9] Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum key distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307.
[10] Ding Y Y, Chen H, Wang S, et al. Polarization variations in installed fibers and their influence on quantum key distribution systems[J]. Optics Express, 2017, 25(22): 27923-27936.
[11] Wang S, Chen W, Yin Z Q, et al. Practical gigahertz quantum key distribution robust against channel disturbance[J]. Optics Letters, 2018, 43(9): 2030-2033.
[12] Qian Y J, He D Y, Wang S, et al. Hacking the quantum key distribution system by exploiting the avalanche-transition region of single-photon detectors[J]. Physical Review Applied, 2018, 10(6): 064062.
[13] Qian Y J, He D Y, Wang S, et al. Robust countermeasure against detector control attack in a practical quantum key distribution system[J]. Optica, 2019, 6(9): 1178-1184.
[14] Cui C, Yin Z Q, Wang R, et al. Twin-field quantum key distribution without phase postselection[J]. Physical Review Applied, 2019, 11(3): 034053.
[15] Wang S, He D Y, Yin Z Q, et al. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system[J]. Physical Review X, 2019, 9(2): 021046.
[16] Sasaki T, Yamamoto Y, Koashi M. Practical quantum key distribution protocol without monitoring signal disturbance[J]. Nature, 2014, 509(7501): 475-478.
[17] Takesue H, Sasaki T, Tamaki K, et al. Experimental quantum key distribution without monitoring signal disturbance[J]. Nature Photonics, 2015, 9(12): 827-838.
[18] Zhang Z, Yuan X, Cao Z, et al. Practical round-robin differential-phase-shift quantum key distribution[J]. New Journal of Physics, 2017, 19(3): 033013.
[19] Wang L, Zhao S. Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources[J]. Quantum Information Processing, 2017, 16(4): 100-117.
[20] Hu Kang, Mao Qianpin, Zhao Shengmei. Round robin differential phase shift quantum key distribution protocol based on heralded single photon source and detector decoy state[J]. Acta Optica Sinica(光学学报), 2017, 37(5): 339-345 (in Chinese)
[21] Wang S,, Yin Z Q,, Chen W, et al. Experimental demonstration of a quantum key distribution without signal disturbance monitoring[J]. Natature Photonics, 2015, 9(12), 832-844.
[22] Guan J Y, Cao Z, Liu Y, et al. Experimental passive round-robin differential phase-shift quantum key distribution[J]. Physical Review Letters, 2015, 114: 180502.
[23] Li Y H, Cao Y, Dai H, et al. Experimental round-robin differential phase-shift quantum key distribution[J]. Physical Review A, 2016, 93: 030302(R).
[24] Yin H L, Fu Y, Mao Y, et al. Detector-decoy quantum key distribution without monitoring signal disturbance[J]. Physical Review A, 2016, 93(2): 022330.
[25] Lu Y J, Zhu L, Ou Z Y. Security improvement by using a modified coherent state for quantum cryptography[J]. Physical Review A, 2005, 71(3): 032315.
[26] Yin Z Q, Han Z F, Sun F W, et al. Decoy state quantum key distribution with modified coherent state[J]. Physical Review A, 2007, 76(1): 014304.
|