Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (3): 257-265.
• Spectroscopy • Next Articles
LI Jiwu1, WANG Chun2, BING Pibing3, JIANG Haitao1,4
Received:
2020-01-19
Revised:
2020-03-05
Published:
2020-05-28
Online:
2020-05-28
CLC Number:
LI Jiwu, WANG Chun, BING Pibing, JIANG Haitao, . Theoretical Study on Circular Dichroism Spectral Sensing Properties of Chiral Plasmonic Metasurface[J]. Chinese Journal of Quantum Electronics, 2020, 37(3): 257-265.
[1] | Oh S H, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors[J]. Nature Communications, 2018, 9(1): 5263. |
[2] | Yanik A A, Cetin A E, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances[C]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 11784-11789. |
[3] | Li Na, Tittl A, Song Y, et al. DNA-assembled bimetallic plasmonic nanosensors[J]. Light: Science & Applications, 2014, 3: e226. |
[4] | Urbonas D, Balčytis A, Vaškevičius K, et al. Air and dielectric bands photonics crystal microringresonator for refractive index sensing[J]. Optics Letters, 2016, 41(15): 3655-3658. |
[5] | Cscelli E, Sozzi M, Poli F, et al. Twoard a highly specific DNA biosensor: PNA-modified suspended-core photonic crystal fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(4): 967-972. |
[6] | Lu Meihong, Lei Haiying, Wang Zhijun, et al. Flourescence spectra and Raman spectra of several synthetic food colors[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(1): 12-17 (in Chinese). |
[7] | Lu Hai, Huang Meng, Kang Xiubao, et al. Improving the sensitivity of compound waveguide grating biosensor via modulated wavevector[J]. Applied Physics Express, 2018, 11(8): 082202. |
[8] | Mohammadi E, Tsakmakidis K L, Askarpour A N, et al. Nanophotonic platforms for enhanced chiral sensing[J]. ACS Photonics, 2018, 5(7): 2669-2675. |
[9] | Yang N, Tang Y Q, Cohen A E. Spectroscopy in sculpted fields[J]. Nano Today, 2009, 4(3): 269-279. |
[10] | Tang Y Q, Cohen A E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light[J]. Science, 2011, 332(6027): 333-336. |
[11] | Govorov A O, Fan Z Y, Hernandez P, et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: Plasmon enhancement, dipole interactions, and dielectric effects[J]. Nano Letters, 2010, 10(4): 1374-1382. |
[12] | Kneer L M, Roller E M, Besteiro L V, et al. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots[J]. ACS Nano, 2018, 12(9): 9110-9115. |
[13] | Zhang H, Govorov A O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals[J]. Physical Review B, 2013, 87(7): 075410. |
[14] | Davis T J, Gómez D E. Interaction of localized surface plasmons with chiral molecules[J]. Physical Review B, 2014, 90(23): 235424. |
[15] | Lu F, Tian Y, Liu M Z, et al. Discrete nano-cubes as plasmonic reporters of molecular chirality[J]. Nano Letters, 2013, 13(7): 3145-3151. |
[16] | Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science and Application, 2014, 3(10): e218. |
[17] | Yan Xin, Liang Lanju, Zhang Yating, et al. Research progress of electromagnetic metasurface used for radar cross section reduction in microwave and terhertz wave[J]. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(6): 1639-1644 (in Chinese). |
[18] | Yan Xin, Liang Lanju, Zhang Yating, et al. A coding metasurfaces used for wideband radar cross section reduction in terahertz frequencies[J]. Acta Physica Sinica(物理学报), 2015, 64(15): 158101 (in Chinese). |
[19] | Wang Bo, Zhang Yan. Design and applications of THz metamaterials and metasurfaces[J]. Journal of Terahertz Science and Electronic Information Technology(太赫兹科学与电子信息学报), 2015, 13(1): 1-12, 18 (in Chinese). |
[20] | Wang B X, Xie Q, Dong G X, et al. Quad-spectral perfect metamaterial absorber at terahertz frequency based on a double-layer stacked resonance structure[J]. Journal of Electronic Materials, 2019, 48(4): 2209-2214. |
[21] | Xia L P, Cui H L, Zhang M, et al. Broadband anisotropy in terahertz metamaterial with single-layer gap ring array[J]. Materials, 2019, 12 (4): 2255. |
[22] | Xia L P, Zhang X, Zhang M, et al. Deep electrical modulation of terahertz wave based on hybrid metamaterial-dielectric-graphene structure[J]. Applied Sciences (Switzerland), 2019, 9 (3): 507. |
[23] | Zhao J, Cheng Q, Wang X K, et al. Controlling the bandwidth of terahertz low-scattering metasurfaces[J]. Advanced Optical Materials, 2016, 4(11): 1773-1779. |
[24] | Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. |
[25] | Decker M, Ruther M, Kriegler C E, et al. Strong optical activity from twisted-cross photonic metamaterials[J]. Optics Letters, 2009, 34(16): 2501-2503. |
[26] | Zhao Y, Belkin M A, Alù A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizes[J]. Nature Communications, 2012, 3: 870. |
[27] | Yan X, Yang M S, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492. |
[28] | Ordal M A, Long L L, Bell R J, et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared[J]. Applied Optics, 1983, 22(7): 1099-1119. |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | YAN Zhiwu , GU Naiting , RAO Changhui , . A calibration method for temperature sensors of large ground⁃based solar telescope [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 588-596. |
[8] | MA Fengxiang , ZHAO Yue , LI Chenxi , AN Ran , ZHU Feng , HANG Chen , CHEN Ke . Analysis system of dissolved gas in oil based on optical fiber photoacoustic sensing [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 597-605. |
[9] | CAO Dongmei , LI Yongfang . Investigation on localized surface plasmon resonance in bowtie gold dimer [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 606-613. |
[10] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[11] | QIAN Longlong, SHEN Yong, LIU Qu, ZOU Hongxin. All-solid-state watt-level 388 nm continuous-wave ultraviolet laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 392-399. |
[12] | ZHANG Ruoya , ZHU Qiaofen , ZHANG Yan . Research progress of tunable terahertz metamaterial absorbers [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. |
[13] | WANG Zecheng , YANG Zhongming ∗ , ZHANG Xingyu , FAN Shuzhen , CHEN Xiaohan , CONG Zhenhua , LIU Zhaojun , QIN Zengguang , MING Na , GUO Quanxin , GUO Liyuan . Research progress of terahertz parametric sources [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 141-163. |
[14] | XIAO Wen, ZHANG Minghao, ZHANG Cunlin, ZHANG Liangliang ∗. Characteristics of terahertz wave generated from liquids [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 164-180. |
[15] | PAN Xiaokai , JIANG Mengjie , , WANG Dong , , LYU Xuyang , , LAN Shiqi , , WEI Yingdong , , HE Yuan , , GUO Shuguang , , CHEN Pingping , WANG Lin ∗ , CHEN Xiaoshuang , LU Wei . Application and frontier trend of infrared-terahertz photoelectric detector [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217-237. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 84
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||