Chinese Journal of Quantum Electronics ›› 2020, Vol. 37 ›› Issue (4): 447-455.
• Special Issue on Laser Propogation and Detection in Atmosphere • Previous Articles Next Articles
YANG Xuezong1;2;3∗, FENG Yan1∗
Received:
2020-05-07
Revised:
2020-05-08
Published:
2020-07-28
Online:
2020-07-21
CLC Number:
YANG Xuezong, ∗, FENG Yan∗. Diamond Raman Lasers for Sodium Guide Star[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447-455.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Kawahara T D, Nozawa S, Saito N, et al. Sodium temperature/wind lidar based on laser-diode-pumped Nd:YAG lasers deployed |
at Troms, Norway (69.6 N, 19.2 E) [J]. Optics Express, 2017, 25(12): A491-A501. | |
[2] | Fan T, Yang X, Dong J, et al. Remote magnetometry with mesospheric sodium based on gated photon counting [J]. Journal of |
Geophysical Research: Space Physics, 2019, 124(9): 7505-7512. | |
[3] | D’Orgeville C, Bennet F, Blundell M, et al. A sodium laser guide star facility for the ANU/EOS space debris tracking adaptive |
optics demonstrator [C]. Proceedings of SPIE, 2014, 9148. | |
[4] | Mata-Calvo R, Calia D B, Barrios R, et al. Laser guide stars for optical free-space communications [C]. Proceedings of SPIE, |
20 | 17, 10096. |
[5] | Hillman P D, Drummond J D, Denman C A, et al. Simple model, including recoil, for the brightness of sodium guide stars |
created from CW single frequency fasors and comparison to measurements [C]. Proceedings of SPIE, 2008, 7015. | |
[6] | Holzl¨ohnerR, Rochester S M, Bonaccini C D, et al. Optimization of cw sodium laser guide star efficiency [J]. Astronomy & |
Astrophysics, 2010, 510: A20. | |
[7] | Bass I L, Bonanno R E, Hackel R P, et al. High-average-power dye laser at Lawrence Livermore National Laboratory [J]. |
Applied Optics, 1992, 31(33): 6993-7006. | |
[8] | Denman C A, DrummondJ D, Eickhoff M L, et al. Characteristics of sodium guide stars created by the 50-watt FASOR and |
first closed-loop AO results at the Starfire optical range [C]. Proceedings of SPIE, 2006, 6272: 695916. | |
[9] | Lu Y, Zhang L, Xu X, et al. 208 W all-solid-state sodium guide star laser operated at modulated-longitudinal mode [J]. Optics |
Express, 2019, 27(15): 20282-20289. | |
[10] | Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping [J]. Publications |
of the Astronomical Society of the Pacific, 2015, 127(954): 749-756. | |
[11] | Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently |
combined narrow-band Raman fibre amplifiers [J]. Optics Express, 2010, 18(8): 8540-8555. | |
[12] | Yang X, Zhang L, Cui S, et al. Sodium guide star laser pulsed at Larmor frequency [J]. Optics Letters, 2017, 42(21): 4351-4354. |
[13] | D’Orgeville C, Fetzer G J. Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational |
awareness [C]. Proceedings of SPIE, 2016, 9909: 99090R. | |
[14] | Mildren R P. Intrinsic Optical Properties of Diamond [M]. Wiley, 2013. |
[15] | Lux O, Sarang S, Kitzler O, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free |
gain [J]. Optica, 2016, 3(8): 876-881. | |
[16] | Yang X, Kitzler O, Spence D J, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic selfsuppression |
and spatial-hole-burning-free gain [J]. Optics Letters, 2019, 44(4): 839-842. | |
[17] | Friel I, Geoghegan S L, Twitchen D J, et al. Development of high quality single crystal diamond for novel laser applications |
[C] | Proceedings of SPIE, 2010, 7838: 783819. |
[18] | Lawandy N, Afzal R. Solid state diamond Raman laser [P]. U.S. Patent, 20050163169 A1, 2004. |
[19] | Piper J A, Pask H M. Crystalline Raman lasers [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): |
69 | 2-704. |
[20] | Granados E, Spence D J, Mildren R P. Deep ultraviolet diamond Raman laser [J]. Optics Express, 2011, 19(11): 10857-10863. |
[21] | Jasbeer H, Williams R J, Kitzler O, et al. Wavelength diversification of high-power external cavity diamond Raman lasers |
using intracavity harmonic generation [J]. Optics Express, 2018, 26(2): 1930-1941. | |
[22] | Mildren R P, Butler J E, Rabeau J R. CVD-diamond external cavity Raman laser at 573 nm [J]. Optics Express, 2008, 16(23): |
18 | 950-18955. |
[23] | Spence D J, Granados E, Mildren R P. Mode-locked picosecond diamond Raman laser [J]. Optics Letters, 2010, 35(4): 556-558. |
[24] | Sabella A, Piper J A, Mildren R P. 1240 nm diamond Raman laser operating near the quantum limit [J]. Optics Letters, 2010, |
35 | (23): 3874-3876. |
[25] | Sabella A, Piper J A, Mildren R P. Efficient conversion of a 1.064 m Nd: YAG laser to the eye-safe region using a diamond |
Raman laser [J]. Optics Express, 2011, 19(23): 23554-23560. | |
[26] | Jel´ınek Jr M, Kitzler O, Jel´ınkov´a H, et al. CVD-diamond external cavity nanosecond Raman laser operating at 1.63 m |
pumped by 1.34 m Nd: YAP laser [J]. Laser Physics Letters, 2012, 9(1): 35-38. | |
[27] | McKay A, Kitzler O, Liu H, et al. High average power (11 W) eye-safe diamond Raman laser [C]. Proceedings of SPIE, 2012, |
85 | 51: 85510U. |
[28] | Sabella A, Piper J A, Mildren R P. Mid-infrared diamond Raman laser with tuneable output [C]. Proceedings of SPIE, 2014, |
89 | 59: 89590B. |
[29] | Sabella A, Piper J A, Mildren R P. Diamond Raman laser with continuously tunable output from 3.38 to 3.80 m [J]. Optics |
Letters, 2014, 39(13): 4037-4040. | |
[30] | Sabella A. Long Wavelength Extension of Diamond Raman Lasers [D]. Australia: Doctorial Dissertation of Macquarie University, |
2017. | |
[31] | Kaminskii A A, Hemley R J, Lai J, et al. High-order stimulated Raman scattering in CVD single crystal diamond [J]. Laser |
Physics Letters, 2007, 4(5): 350-353. | |
[32] | Warrier A M, Lin J, Pask H M, et al. Highly efficient picosecond diamond Raman laser at 1240 and 1485 nm [J]. Optics |
Express, 2014, 22(3): 3325-3333. | |
[33] | Murtagh M, Lin J, Mildren R P, et al. Efficient diamond Raman laser generating 65 fs pulses [J]. Optics Express, 2015, 23(12): |
15 | 504-15513. |
[34] | Murtagh M, Lin J, Mildren R P, et al. Ti: sapphire-pumped diamond Raman laser with sub-100-fs pulse duration [J]. Optics |
Letters, 2014, 39(10): 2975-2978. | |
[35] | Bai Z, Williams R J, Jasbeer H, et al. Large brightness enhancement for quasi-continuous beams by diamond Raman laser |
conversion [J]. Optics Letters, 2018, 43(3): 563-566. | |
[36] | Williams R J, Nold J, Strecker M, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond [J]. Laser |
& Photonics Reviews, 2015, 9(4): 405-411. | |
[37] | Williams R J, Kitzler O, Bai Z, et al. High power diamond Raman lasers [J]. IEEE Journal of Selected Topics in Quantum |
Electronics, 2018, 24(5): 1-14. | |
[38] | Heinzig M,Walbaum T,Williams R J, et al. High-power single-pass pumped diamond Raman laser [C]. Conference on Lasers |
and Electro-Optics/Europe-European Quantum Electronics Conference, 2017. | |
[39] | Antipov S, Sabella A, Williams R J, et al. 1.2 kW quasi-steady-state diamond Raman laser pumped by an M2 = 15 beam [J]. |
Optics Letters, 2019, 44(10): 2506-2509. | |
[40] | Heinzig M, Palma-Vega G, Walbaum T, et al. High power 1st and 2nd Stokes diamond Raman frequency conversion [C]. |
Advanced Solid State Lasers Conference, 2018. | |
[41] | Kitzler O, Lin J, Pask H M, et al. Single-longitudinal-mode ring diamond Raman laser [J]. Optics Letters, 2017, 42(7): 1229- |
1232. | |
[42] | Yang X, Kitzler O, Spence D J, et al. Diamond sodium guide star laser [J]. Optics Letters, 2020, 45(7): 1898-1901. |
[43] | Mckay A, Spence D J, Coutts D W, et al. Diamond-based concept for combining beams at very high average powers [J]. Laser |
& Photonics Reviews, 2017, 11(3): 1600130. | |
[44] | Reilly S, Savitski V G, Liu H, et al. Monolithic diamond Raman laser [J]. Optics Letters, 2015, 40(6): 930-933. |
[45] | Murray J T, Austin W L, Powell R C. Intracavity Raman conversion and Raman beam cleanup [J]. Optical Materials, 1999, |
11 | : 353-371. |
[46] | Martin K I, Clarkson W A, Hanna D C. Self-suppression of axial mode hopping by intracavity second-harmonic generation |
[J] | Optics Letters, 1997, 22(6): 375-377. |
[47] | Glick Y, Sintov Y, Zuitlin R, et al. Single-mode 230 W output power 1018 nm fiber laser and ASE competition suppression |
[J] | Journal of the Optical Society of America B: Optical Physics, 2016, 33(7): 1392-1398. |
[48] | Jiang M, Zhou P, Xiao H, et al. A high-power narrow-linewidth 1018 nm fiber laser based on a single–mode–fewmode– |
single–mode structure [J]. High Power Laser Science and Engineering, 2015, 3: e25. | |
[49] | Yan P, Wang X, Li D, et al. High-power 1018 nm ytterbium-doped fiber laser with output of 805 W [J]. Optics Letters, 2017, |
42 | (7): 1193-1196. |
[50] | Zhang L, Jiang H, Cui S, et al. Versatile Raman fiber laser for sodium laser guide star [J]. Laser & Photonics Reviews, 2014, |
8( | 6): 889-895. |
[51] | Pedreros B F, Holzl¨ohner R, Rochester S, et al. Frequency chirped continuous-wave sodium laser guide stars: Modeling and |
optimization [J]. Journal of the Optical Society of America B: Optical Physics, 2020, 37(4): 1208-1218. |
[1] | HU Zexiong , , YOU Libing , ∗ , CUN Chao , WANG Hongwei , FAN Jun , WANG Qi , ZHANG Yanlin , FANG Xiaodong , . Time-delay synchronization system with low jitter for excimer laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 69-78. |
[2] | ZHANG Chao, HAN Yashuai, ZHOU Zhengxian, QU Jun ∗. Trapping of two types of Rayleigh particles using focused twisted Hermite-Gaussian-Schell model beam [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 742-751. |
[3] | WANG Ying, LIU Xiaofeng, REN Panpan, LI Shuang, DOU Zhenguo, MEN Zhiwei ∗. Resonance enhanced stimulated Raman scattering of O-H stretching vibration in water molecule [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 774-779. |
[4] | WANG Yan, LI Wen, XUE Dongfeng, ∗. The latest research progress of rare earth optical crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228-241. |
[5] | TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513-523. |
[6] | WANG Yushuang, CHEN Ziyang∗, LIU Yongxin, PU Jixiong∗. Propagation of laser through turbulent atmosphere and scattering medium [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 534-546. |
[7] | ZHU Wenyue, ∗, WANG Huihua, CHEN Xiaowei, ∗, QIAN Xianmei, . Uncertainty analysis of evaluation of high power laser propagation in atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 524-533. |
[8] | SHAO Jiadi, XIE Chenbo, LI Lu, ZHUANG Peng, FANG Zhiyuan, FU Songlin, CAO Ye, YANG Jing. Structural Design and Detection of Solid-etalon in Space-borne Lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 235-241. |
[9] | Cao Mingpo, Hu Mingyong, Zhao Chuchu, Lv Min,Zhang Jian,Wang Wei. Research on Dual Wavelength Laser Coupling Confocal System [J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 556-561. |
[10] | TAO Binkai1,2, CHEN Qunfeng1. Transportable 30 cm optical cavity [J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 299-304. |
[11] | YAO Yanan1,2,ZHANG Shujie1,2,GU Guixin1,WAN Songming1,3. Studies on the stimulated Raman scattering active mode of the Ca3(BO3)2 crystal [J]. Chinese Journal of Quantum Electronics, 2019, 36(2): 213-218. |
[12] | HUANG Minsong, LEI Hengchi, CHEN Jiatian, ZHANG Xiaoqing. Application and Design for an Imaging Measurement System Based on Photodiode Array [J]. J4, 2015, 32(5): 620-626. |
[13] | ZHONG Dongzhou, WANG Yuqing . Manipulation of laser polarization based on the linear electro-optic effect with quasi-phase matching [J]. J4, 2015, 32(5): 555-562. |
[14] | Wang Ling, Yao Zhanwei, Xiong Zongyuan, Li Runbing, Wang Jin, Zhan Mingsheng. Injection locking of Raman laser beams in cold atom interferometers [J]. J4, 2012, 29(1): 27-31. |
[15] | ZHAO Rongxia, LI Aiping. Numerical analysis of nonlinear co-propagation of two optical pulses in photonic crystal fibers [J]. J4, 2011, 28(4): 467-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||