Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (1): 94-98.
• Laser Applications • Previous Articles Next Articles
LI Wencai1, MA Yuliang2, CHEN Jian3
Received:
2020-04-13
Revised:
2020-05-08
Published:
2021-01-28
Online:
2021-02-01
Contact:
Jian Chen
E-mail:jchen@zc-hightech.com
CLC Number:
LI Wencai, MA Yuliang, CHEN Jian. In situ measurement of damage characteristics of fused quartz[J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 94-98.
[1] | Laurence T A, Bude J D, Sonny L, et al. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 |
nm, 3 ns laser pulses at high fluences (20-150 J/cm2) [J]. Optics Express, 2012, 20(10): 11561-11573. | |
[2] | Liu H, Ye X, Zhou X, et al. Subsurface defects characterization and laser damage performance of fused silica optics during |
HF-etched process [J]. Optical Materials, 2014, 36(5): 855-860. | |
[3] | Du D, Liu X, Korn G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J]. |
Applied Physics Letters, 1994, 64(23): 3071-3073. | |
[4] | Ma B, Shen Z, He P, et al. Detection of subsurface defects of fused silica optics by confocal scattering microscopy [J]. Chinese |
Optics Letters, 2010, 8(3): 296-299. | |
[5] | Huang J, Liu H, Wang F, et al. Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm |
nanosecond pulse laser [J]. Optics Express, 2017, 25(26): 33416-33428. | |
[6] | Liu H J, Wang F R, Luo Q, et al. Experimental comparison of damage performance induced by nanosecond 1 ! laser between |
K9 and fused silica optics [J]. Acta Physica Sinica, 2012, 61(7): 076103. | |
刘红捷, 王凤蕊, 罗青,等. K9 和熔石英玻璃纳秒基频激光损伤特性的实验对比研究[J]. 物理学报, 2012, 61(7): | |
07 | 6103. |
[7] | Shao J D, Dai Y P, Xu Q. Progress on optical components for ICF laser facility [J]. Optics and Precision Engineering, 2016, |
24 | (12): 2889-2895. |
邵建达, 戴亚平, 许乔. 惯性约束聚变激光驱动装置用光学元器件的研究进展[J]. 光学精密工程, 2016, 24(12): | |
28 | 89-2895. |
[8] | Xu R. Light scattering: A review of particle characterization applications [J]. Particuology, 2015, 18: 11-21. |
[9] | Carlos H H, Douglas P H. Emission reabsorption laser induced fluorescence (ERLIF) film thickness measurement [J]. Measurement |
Science and Technology, 2001, 12(4): 467-477. | |
[10] | Wu Z, Thomsen M, Kuo P, et al. Photothermal characterization of optical thin film coatings [J]. Optical Engineering, 1997, |
36 | : 251-262. |
[11] | Han Y, Wu Z, Joseph S R, et al. Pulsed photothermal deflection and diffraction effects: Numerical modeling based on Fresnel |
diffraction theory [J]. Optical Engineering, 1999, 38(12): 2122-2128. | |
[12] | Wu Z, Chen J, Dong J. Photothermal microscopy: An effective diagnostic tool for laser irradiation effects on fused silica and |
KDP [C]. Proceedings of SPIE, 2015, 9543: 95431V. | |
[13] | Carr C W, Radousky H B, Rubenchik A M, et al. Localized dynamics during laser-induced damage in optical materials [J]. |
Physical Review Letters, 2004, 92: 087401. | |
[14] | DeMange P, Negres R A, Raman R N, et al. Role of phase instabilities in the early response of bulk fused silica during |
laser-induced breakdown [J]. Physical Review B, 2011, 84: 054118. | |
[15] | Itatani J, Qu´er´e F, Yudin G L, et al. Attosecond streak camera [J]. Physical Review Letters, 2002, 88: 173903. |
[16] | Shepard C L, Campbell P M. Measurements of lateral thermal smoothing of 0.53 m laser intensity nonuniformities via shockwave |
analysis [J]. Physical Review A, 1989, 39: 1344-1350. | |
[17] | Chen J, Dong J, Wu Z. In-situ investigation of damage processes on fused silica induced by a pulsed 355 nm laser with high |
repetition rate [C]. Proceedings of SPIE, 2015, 9345: 93450A. | |
[18] | Wang Y D, Liu X M. Research progress of stand-off Raman spectroscopy [J]. Chinese Journal of Quantum Electronics, 2019, |
36 | (3): 257-263. |
王彦丁, 刘晓萌. 远程拉曼光谱技术研究进展[J]. 量子电子学报, 2019, 36(3): 257-263. |
[1] | ZHANG Yanlin , YOU Libing , WANG Hongwei , WANG Qi , HU Zexiong , FAN Jun , FANG Xiaodong , . Pulse duration measurement of deep ultraviolet ultrashort femtosecond laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 469-475. |
[2] | ZHANG Zhen , DUAN Dian , CHEN Yujun , WEI Shanshan , MA Jindong , YAO Bo , MAO Qinghe . Picosecond pulse fiber front end based on narrow⁃band dissipative soliton Figure⁃9 fiber oscillator and single⁃stage single⁃mode fiber amplifier [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 476-482. |
[3] | TANG Jingling , QI Yue , BAI Zhenxu , QI Yaoyao , DING Jie , YAN Bingzheng , WANG Yulei , LYU Zhiwei , . Passively Q⁃switched sub⁃nanosecond laser based on YAG/Nd: YAG/Cr4+: YAG composite crystal [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 483-491. |
[4] | WANG Chang , ∗ , SONG Gaohui , , TAN Zhiyong , , CAO Juncheng , ∗. Research progress on terahertz imaging technology based on semiconductor photonics devices [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 181-192. |
[5] | CHEN Yujun , , YAO Bo , LIU Haowei , WEI Shanshan , MAO Qinghe , ∗. Development of single-longitudinal-mode DBR fiber laser based on thulium-doped silica glass fiber [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 56-61. |
[6] | WEI Shiqin , WANG Yao , WANG Mengzhen , WANG Fang , LIU Junjie , LIU Yuhuai , ∗. Performance of deep ultraviolet laser diode based on well-type ladder electron barrier [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 62-68. |
[7] | ZHONG Yulong , , CHENG Tingqing ∗. Experimental study of LD side-pumped Tm:YAG electro-optically Q-switched laser [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 736-741. |
[8] | ZHANG Yanlin , , YOU Libing , ∗ , WANG Hongwei , WANG Qi , HU Zexiong , , FAN Jun , , FANG Xiaodong , . Excimer laser amplification technology of ultraviolet ultrashort pulse [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 677-686. |
[9] | ZHANG Rui , MEI Dajiang , ∗ , SHI Xiaotu , , MA Rongguo , , ZHANG Qingli , ∗ , DOU Renqin , , LIU Wenpeng , . Research progress of dislocation of YAG crystal [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 687-706. |
[10] | YANG Hao, TENG Hao, ∗, LYU Renchong, ZHU Jiangfeng∗, WEI Zhiyi, . Study on femtosecond chirped-pulse amplification based on concentric stretcher [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 566-573. |
[11] | KANG Renzhu, LYU Renchong, TENG Hao, ZHU Jiangfeng, WEI Zhiyi, . Study on Yb: KGW regenerative amplifier based on improved Frantz-Nodvik equation [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 574-582. |
[12] | ZHANG Aoxiang, WANG Yao, WANG Mengzhen, WEI Shiqin, WANG Fang, LIU Yuhuai, . Performance optimization of AlGaN-based deep ultraviolet laser diode with M-shaped hole barrier structure [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 583-590. |
[13] | LI Chenrui, LI Xiangle, YING Jiajun, WU Yitong, SHENG Yuqi, ZHOU Yong, GAO Weiqing. Beat-free 1570 nm fiber laser and its application in 2 m wave band fiber laser generation [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 591-597. |
[14] | XU Shuixiu , YU Ziyu , QIN Huaiqing , MO Juehui , LU Zhimin , DONG Meirong , LU Jidong , YAO Shunchun , ∗. Research and application of rapid analysis of coal quality by laser-induced breakdown spectroscopy [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 727-750. |
[15] | BI Xiangli , ∗ , SONG Yiheng , , YAN Xiusheng , , GAO Wenqing , . Research of dual-wavelength intelligent cooperative laser guidance method [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 863-871. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 423
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 650
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||