Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (2): 148-159.
• Special Issue on Advanced Optical Crystal • Previous Articles Next Articles
XU Min, GONG Qiaorui, LI Shanming, HANG Yin∗
Received:
2021-01-26
Revised:
2021-01-29
Published:
2021-03-28
Online:
2021-03-29
CLC Number:
XU Min, GONG Qiaorui, LI Shanming, HANG Yin∗. Research progress of titanium doped sapphire laser crystal[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 148-159.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Wang J Y, Wu Y C. Progress of the research on photoelectronic functional crystals [J]. Materials China, 2010, 29(10): 1-15. |
王继扬, 吴以成. 光电功能晶体材料研究进展[J]. 中国材料进展, 2010, 29(10): 1-15. | |
[2] | Wang J Y, Yu H H,Wu Y C, et al. Advanced materials and materials genome-review recent developments in functional crystals |
in China [J]. Engineering, 2015, 1(2): 192-210. | |
[3] | Lincoln Laboratory. Solid state research report [R]. MIT, 1982. |
[4] | Moulton P. Titanium-doped sapphire: Tunable solid-sate laser [J]. Optics News, 1982, 8(6): 9. |
[5] | Aggarwal R L, Sanchez A, Fahey R E, et al. Magnetic and optical measurements on Ti:Al2O3 crystals for laser applications: |
Concentration and absorption cross section of Ti3+ ions [J]. Applied Physics Letters, 1986, 48(20): 1345-1347. | |
[6] | Sanchez A, Strauss A J, Aggarwal R L, et al. Crystal growth, spectroscopy, and laser characteristics of Ti:Al2O3 [J]. IEEE |
Journal of Quantum Electronics, 1988, 24(6): 995-1002. | |
[7] | Han X Z, Feng X Q, Li W F, et al. One kind of new Ti3+ luminous center in Ti:Al2O3 crystals [J]. Optical Materials, 2020, |
10 | 5: 109881. |
[8] | Xu M, Si J L, Zhang X C, et al. Study on thermal properties of titanium-doped sapphire crystal [J]. Journal of Synthetic Crystal, |
20 | 14, 43(5): 1043-1049. |
徐民, 司继良, 张小翠, 等. 掺钛蓝宝石晶体热学性质研究[J]. 人工晶体学报, 2014, 43(5): 1043-1049. | |
[9] | Rapoport W R, Khattak C P. Titanium sapphire laser characteristics [J]. Applied Optics, 1988, 27(13): 2677-2684. |
[10] | Xu M, Si J L, Zhang X C, et al. Study on growth of large-sized Ti:Al2O3 crystals by the temperature gradient technique [J]. |
Journal of Synthetic Crystal, 2014, 43(1): 2781-2786. | |
徐民, 司继良, 张小翠, 等. 温度梯度法生长大尺寸钛宝石晶体研究[J]. 人工晶体学报, 2014, 43(1): 2781-2786. | |
[11] | Lacovara P, Esterowitz L, Kokta M. Growth, spectroscopy, and lasing of titanium-doped sapphire [J]. IEEE Journal of Quantum |
Electronics, 1985, QE-21(10): 1614-1618. | |
[12] | Fukuda T, Okano Y, Kodama N, et al. Growth of bubble-free Ti-doped Al2O3 single crystal by the Czochralski method [J]. |
Crystal Research & Technology, 1995, 30(2): 185-188. | |
[13] | Alombert-Goget G, Li H, Faria J, et al. Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil |
technique [J]. Optical Materials, 2016, 51: 1-4. | |
[14] | Yin S T,Wu L S. Study on the growth of high quality long sized titanium doped sapphire (Ti:Al2O3) crystal and practical lamp |
pump Ti:Al2O3 laser [J]. Materials Reports, 2001, 15(2): 46-47. | |
殷绍唐, 吴路生. 优质长尺寸掺钛宝石晶体生长及实用型灯泵钛宝石激光器的研究[J]. 材料导报, 2001, 15(2): 46-47. | |
[15] | Roth P W, Burns D, Kemp A J. Power scaling of a directly diode-laser-pumped Ti:sapphire laser [J]. Optics Express, 2012, |
20 | (18): 20629-20634. |
[16] | G¨urel K, Wittwer V J, Hoffmann M, et al. Green-diode-pumped femtosecond Ti:sapphire laser with up to 450 mW average |
power [J]. Optics Express, 2015, 23(23): 30043-30048. | |
[17] | Li R X, Chen Y, Leng Y X, et al. Frontiers in ultrafast optics and ultra-intense laser technology [J]. Scientia Sinica Informationis, |
20 | 16, 46(9): 1236-1254. |
李儒新, 程亚, 冷雨欣, 等. 超快光学与超强激光技术前沿研究[J]. 中国科学:信息科学, 2016, 46(9): 1236-1254. | |
[18] | Joyce D B, Schmid F. Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for |
petawatt class lasers [J]. Journal of Crystal Growth, 2010, 312: 1138-1141. | |
[19] | Ning K J, Liu Y C, Ma J, et al. Growth and characterization of large-scale Ti:sapphire crystal using heat exchange method for |
ultra-fast ultra-high-power lasers [J]. CrystEngComm, 2015, 17: 2801-2805. | |
[20] | Cao H, Gan Z B, Liang X Y, et al. Optical property measurements of 235 mm large-scale Ti:sapphire crystal [J]. Chinese |
Optics Letters, 2018, 16(7): 071401. | |
[21] | Hang Y, Xu M, Zhang L H, et al. Domestic large sized Ti:sapphire crystal assists the world’s strongest pulsed laser amplification |
output [J]. Journal of Synthetic Crystal, 2019, 48(5): 809-811. | |
杭寅, 徐民, 张连翰, 等. 国产大尺寸钛宝石晶体助力世界最强脉冲激光放大输出[J]. 人工晶体学报, 2019, 48(5): | |
80 | 9-811. |
[22] | Nehari A, Brenier A, Panzer G, et al. Ti-doped sapphire (Al2O3) single crystals grown by the Kyropoulos technique and optical |
characterizations [J]. Crystal Growth & Design, 2011, 11(2): 445-448. | |
[23] | Alombert-Goget G, Sen G, Pezzani C, et al. Large Ti-doped sapphire single crystals grown by the Kyropoulos technique for |
petawatt power laser application [J]. Optical Materials, 2016, 61: 21-24. | |
[24] | Cui F Z, Zhou Y Z, Qiao J W, et al. Growth of high quality sapphire crystal by temperature gradient technique [J]. Journal of |
the Chinese Ceramic Society, 1980, 8(2): 109-113. | |
崔凤柱, 周永宗, 乔景文, 等. 导向温梯法生长优质兰宝石单晶[J]. 硅酸盐学报, 1980, 8(2): 109-113. | |
[25] | Zhang Q, Hu B, Deng P Z. Investigation of dislocation in sapphire and Ti3+-doped sapphire single crystals [J]. Journal of |
Synthetic Crystal, 1991, Z1: 367. | |
张强, 胡兵, 邓佩珍. 白宝石、掺钛宝石的位错[J]. 人工晶体学报, 1991, Z1: 367. | |
[26] | Liu J H, Deng P Z, Gan F X. Concentration effect on fluorescent characteristics of Ti:Al2O3 crystal [J]. Optical Materials, |
19 | 95, 4(6): 781-785. |
[27] | Dong J, Deng P Z. Ti:sapphire crystal used in ultrafast lasers and amplifiers [J]. Journal of Crystal Growth, 2004, 261: 514-519. |
[28] | Peshev P, Delineshev S, Petrov V, et al. Bridgman-stockbarger growth and spectral characteristics of Al2O3:Ti3+ single crystals |
[J] | Crystal Research & Technology, 1988, 23(5): 641-645. |
[29] | Nizhankovskiy S V, Dan’ko A Y, Krivonosov E V, et al. Growth of large Ti:sapphire crystals by horizontal directional solidification |
in argon atmosphere [J]. Inorganic Materials, 2010, 46(1): 35-37. | |
[30] | Xu H, Jiang Y J, Fan X J, et al. Growth and characterization of Fe:Ti:Al2O3 single crystal by floating zone method [J]. Journal |
of Crystal Growth, 2013, 372: 82-86. | |
[31] | Moulton P F. Spectroscopic and laser characteristics of Ti:Al2O3 [J]. Journal of the Optical Society of America B, 1986, 3(1): |
12 | 5-133. |
[32] | Pinto J F, Esterowitz L, Rosenblatt G H, et al. Improved Ti:sapphire laser performance with new high figure of merit crystals |
[J] | IEEE Journal of Quantum Electronics, 1994, 30(11): 2612-2616. |
[33] | Fahey R E, Strauss A J, Sanchez A, et al. Tunable Solid State Lasers II [M]. New York: Springer, 1987: 82-88. |
[34] | Aggarwal R L, Sanchez A, Stuppi M M, et al. Residual infrared absorption in as-grown and annealed crystals of Ti:Al2O3 [J]. |
IEEE Journal of Quantum Electronics, 1988, 24(6): 1003-1008. | |
[35] | Yin S T, ChenW, Feng L, et al. Research on the broadly residual absorption of titanium doped sapphire [J]. Journal of Synthetic |
Crystal, 1997, 26(3): 246. | |
殷绍唐, 陈伟, 风雷, 等. 掺钛宝石晶体的宽带残余吸收研究[J]. 人工晶体学报, 1997, 26(3): 246. | |
[36] | Zeng G P, Yin S T. Relation between residual infrared absorption and dislocations in Ti3+: -Al2O3 single crystal [J]. Journal |
of Synthetic Crystal, 2000, 29(s1): 203. | |
曾贵平, 殷绍唐. 钛宝石晶体中的位错和红外残余吸收的关系[J]. 人工晶体学报, 2000, 29(s1): 203. | |
[37] | Zeng G P, Yin S T, Yu X L. The relation between infrared residual absorption and point defects in Ti3+: -Al2O3 single crystal |
[J] | Chinese Journal of Quantum Electronics, 2002, 19(1): 25-30. |
曾贵平, 殷绍唐, 于锡玲. 钛宝石晶体中的红外残余吸收与点缺陷的关系[J]. 量子电子学报, 2002, 19(1): 25-30. | |
[38] | Matsunaga K, Nakamura A, Yamamoto T, et al. Theoretical study of defect structures in pure and titanium-doped alumina [J]. |
Solid State Ionics, 2004, 172: 155-158. | |
[39] | Matsunaga K, Nakamura A, Yamamoto T, et al. First-principles study of defect energetics in titanium-doped alumina [J]. |
Physical Review B, 2003, 68: 214102. | |
[40] | Pustovarov V A, Perevalov T V, Gritsenko V A, et al. Oxygen vacancy in Al2O3: Photoluminescence study and first-principle |
simulation [J]. Thin Solid Films, 2011, 519(19): 6319-6322. | |
[41] | Matsunaga K, Tanaka T, Yamamoto T, et al. First-principles calculations of intrinsic defects in Al2O3 [J]. Physical Review B, |
20 | 03, 68: 085110. |
[42] | Matsunaga K, Mizoguchi T, Nakamura A, et al. Formation of titanium-solute clusters in alumina: A first-principles study [J]. |
Applied Physics Letters, 2004, 84(23): 4795-4797. | |
[43] | Kravchenko L Y, Fil D V. Defect complexes in Ti-doped sapphire: A first principles study [J]. Journal of Applied Physics, |
20 | 18, 123(2): 023104. |
[44] | Moulton P F, Cederberg J G, Stevens K T, et al. Characterization of absorption bands in Ti:sapphire crystals [J]. Optical |
Materials Express, 2019, 9(5): 2216-2251. | |
[45] | Klein J, Kafka J D. The Ti:sapphire laser: The flexible research tool [J]. Nature Photonics, 2010, 4: 289-289. |
[46] | Strickland D, Mourou G. Compression of amplified chirped optical pulses [J]. Optics Communications, 1985, 56: 219-221. |
[47] | Perry M D, Pennington D, Stuart B C, et al. Petawatt laser pulses [J]. Optics Letters, 1999, 24(3): 160-162. |
[48] | Aoyama M, Yamakawa K, Akahane Y, et al. 0.85 PW, 33 fs Ti:sapphire laser [J]. Optics Letters, 2003, 28(17): 1594-1596. |
[49] | Chu Y X, Liang X Y, Yu L H, et al. High-contrast 2.0 petawatt Ti:sapphire laser system [J]. Optics Express, 2013, 21(24): |
29 | 231-29239. |
[50] | Chu Y X, Gan Z B, Liang X Y, et al. High-energy large-aperture Ti:sapphire amplifier for 5 PW laser pulses [J]. Optics Letters, |
20 | 15, 40(21): 5011-5014. |
[51] | Li W Q, Gan Z B, Yu L H, et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility [J]. Optics |
Letters, 2018, 43(22): 5681-5684. | |
[52] | Roth P W, Maclean A J, Burns D, et al. Directly diode-laser-pumped Ti:sapphire laser [J]. Optics Letters, 2009, 34(21): |
33 | 34-3336. |
[53] | Roth P W, Burns D, Kemp A J. Power scaling of a directly diode-laser-pumped Ti:sapphire laser [J]. Optics Express, 2012, |
20 | (18): 20629-20634. |
[54] | Durfee C G, Storz T, Garlick J, et al. Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser [J]. Optics Express, 2012, |
20 | (13): 13677-13683. |
[55] | Sawada R, Tanaka H, Sugiyama N, et al. Wavelength-multiplexed pumping with 478 and 520 nm indium gallium nitride laser |
diodes for Ti:sapphire laser [J]. Applied Optics, 2017, 56(6): 1654-1661. | |
[56] | Miao Z W, Yu H J, Zhang J Y, et al. Watt-level CW Ti:sapphire oscillator directly pumped with green laser diodes module [J]. |
IEEE Photonics Technology Letter, 2020, 32(5): 247-250. | |
[57] | Liu H, Wang G Y, Jiang J W, et al. Sub-10 fs pulse generation |
[1] | LIAO Yangfang , XIE Quan . Effect of annealing temperature on the quality and optical properties of Mg2Si films on sapphire substrates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 492-499. |
[2] | ZHANG Ruoya , ZHU Qiaofen , ZHANG Yan . Research progress of tunable terahertz metamaterial absorbers [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 301-318. |
[3] | XU Jianwei , OUYANG Shoujian , DUAN Shouxin , ZOU Liner , , DENG Xiaohua , SHEN Yun, . Terahertz planar toroidal dipole metamaterial sensor for detecting gutter oil [J]. Chinese Journal of Quantum Electronics, 2023, 40(3): 333-339. |
[4] | PAN Xiaokai , JIANG Mengjie , , WANG Dong , , LYU Xuyang , , LAN Shiqi , , WEI Yingdong , , HE Yuan , , GUO Shuguang , , CHEN Pingping , WANG Lin ∗ , CHEN Xiaoshuang , LU Wei . Application and frontier trend of infrared-terahertz photoelectric detector [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 217-237. |
[5] | DONG Qinlu, HAN Yiping ∗ , ZHANG Qifan. Transmission characteristics of terahertz waves in a hypersonic target plasma sheath [J]. Chinese Journal of Quantum Electronics, 2023, 40(2): 258-266. |
[6] | TONG Ye , ZHENG Yuhang , LIU Wenpeng , , DING Shoujun , ∗. Synthesis and luminescent properties of Dy 3+ and Eu 3+ codoped NaY(MoO4)2 phosphors [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 32-39. |
[7] | CHEN Weidong #, ZHUO Linqing #, ZHU Wenguo , ZHENG Huadan , ZHONG Yongchun , TANG Jieyuan , , XIAO Yi , XIE Mengyuan , ZHANG Jun , YU Jianhui ∗ , CHEN Zhe , ∗. Research progress of optical fiber integrated photodetectors [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 942-954. |
[8] | LIAO Yangfang, XIE Quan∗. Effects of annealing temperature and annealing time on structure of Mg2Si films on different substrates [J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 644-650. |
[9] | CHENG Maojie, ZHANG Huili, DONG Kunpeng, QUAN Cong, HU Lunzheng, HAN Zhiyuan, SUN Dunlu, ∗. Growth and properties of gadolinium gallium garnet crystal with 3 inches diameter [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 160-166. |
[10] | DOU Renqin, LUO Jianqiao, LIU Wenpeng, GAO Jinyun, WANG Xiaofei, HE Yi, CHEN Yingying, ZHANG Qingli. Accurate determination of Yb:YAG crystal components by XRF method [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 167-171. |
[11] | HAN Weimin, NI Youbao∗, WU Haixin, WANG Zhenyou, HUANG Changbao. Growth of a new long-wave infrared material PbGa6Te10 [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 172-179. |
[12] | WANG Chao, SAI Qinglin∗, QI Hongji∗. Research progress on photoelectric properties of Ta5+ and Nb5+ doped -Ga2O3 single crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 219-227. |
[13] | YANG Fan, REN Guohao. Development of ultrafast scintillation crystals [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243-258. |
[14] | WANG Qiang, DING Yuchong∗, QU Jingjing, WANG Lu, DONG Honglin, FANG Chengli, MAO Shiping. Performance of Ce: GAGG scintillation crystals with different thickness [J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 259-264. |
[15] | ZHANG Zhongzheng, , ZHANG Chunhong, YAN Wanjun, QIN Xinmao, . Influence of doping on photoelectric properties of new two-dimensional material phosphorene [J]. Chinese Journal of Quantum Electronics, 2021, 38(1): 108-115. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||