[1] |
Cyranoski D. Materials science: China’s crystal cache [J]. Nature, 2009, 457: 953-955.
|
[2] |
Mutailipu M, Pan S. Emergent deep-ultraviolet nonlinear optical candidates [J]. Angewandte Chemie International Edition,
|
20 |
20, 59: 20302-20317.
|
[3] |
Tran T T, Yu H, Rondinelli J M, et al. Deep ultraviolet nonlinear optical materials [J]. Chemistry of Materials, 2016, 28:
|
52 |
38-5258.
|
[4] |
Meng J, Liu G, Zhang W, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor [J].
|
|
Nature, 2009, 462: 335-338.
|
[5] |
Chen C T, Wang G L, Wang X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties
|
|
and applications [J]. Applied Physics B, 2009, 97: 9-25.
|
[6] |
Chen J J. Characterization of Nonlinear Optical Properties of Deep-Ultraviolet Transparent BaMgF4 Crystal [D]. Shanghai:
|
|
Shanghai Jiao Tong University, 2012.
|
|
陈俊杰. 深紫外透明晶体BaMgF4 的非线性光学表征[D]. 上海: 上海交通大学, 2012.
|
[7] |
V´ıllora E G, Shimamura K, Sumiya K, et al. Birefringent-and quasi phase-matching with BaMgF4 for vacuum-UV/UV and
|
|
mid-IR all solid-state lasers [J]. Optics Express, 2009, 17: 12362-12378.
|
[8] |
Shimamura K, V´ıllora E G, Zeng H, et al. Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers
|
[J] |
Applied Physics Letters, 2006, 89: 232911.
|
[9] |
Buchter S C, Fan T Y, Liberman V, et al. Periodically poled BaMgF4 for ultraviolet frequency generation [J]. Optics Letters,
|
20 |
01, 26: 1693-1695.
|
[10] |
Bergman J G, Crane G R, Guggenheim H. Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4 [J].
|
|
Journal of Applied Physics, 1975, 46: 4645-4646.
|
[11] |
Wang Z, Qiao H, Su R, et al. Mg3B7O13Cl: A new quasi-phase matching crystal in the deep-ultraviolet region [J]. Advanced
|
|
Functional Materials, 2018, 28: 1804089.
|
[12] |
Xiong Z, He J, Hu B, et al. Zn3B7O13Cl: A new deep-ultraviolet transparency nonlinear optical crystal with boracite structure
|
[J] |
ACS Applied Materials Interfaces, 2020, 12: 42942-42948.
|
[13] |
Zagudailova M B, Plachinda P A, Berdonosov P S, et al. Second harmonic generation in boracites [J]. Inorganic Materials,
|
20 |
05, 41: 393-396.
|
[14] |
Wang Z, He J, Hu B, et al. Ca2B5O9Cl and Sr2B5O9Cl: Nonlinear optical crystals with deep-ultraviolet transparency windows
|
[J] |
ACS Applied Materials Interfaces, 2020, 12: 4632-4637.
|
[15] |
Bither T A, Young H S. Nitrate-and fluoroboracites M3B7O13NO3 and M3B7O13F [J]. Journal of Solid State Chemistry, 1974,
|
10 |
: 302-311.
|
[16] |
Kaminskii A A, Butashin A V, maslyanizin I A, et al. Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals
|
[J] |
Physica Status Solidi (a), 1991, 125: 671.
|
[17] |
Stefanovich S Y, Mill B V, Butashin A V. Ferroelectricity and phase-transitions in LaBGeO5 stilvellite [J]. Kristallografiya,
|
19 |
92, 37: 965-970.
|
[18] |
Milov E, Milov V, Strukov B, et al. Polarization switching and domain structure in LaBGeO5 crystals [J]. Ferroelectrics, 2011,
|
34 |
1: 39-48.
|
[19] |
Strukov B A, Milov E V, Milov V N, et al. Switching processes and formation of the stable artificial domain structure in
|
|
ferroelectric LaBGeO5 [J]. Ferroelectrics, 2005, 314: 105-113.
|
[20] |
Miyazawa S, Kanamori T, Ichikawa S, et al. Cz-growth of ferroelectric LaBGeO5 single crystals [C]. CLEO/Europe and EQEC
|
|
2011.
|