Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (2): 228-241.
• Special Issue on Advanced Optical Crystal • Previous Articles Next Articles
WANG Yan1,2, LI Wen1,3, XUE Dongfeng4,5∗
Received:
2020-11-27
Revised:
2020-12-31
Published:
2021-03-28
Online:
2021-03-29
CLC Number:
WANG Yan, LI Wen, XUE Dongfeng, ∗. The latest research progress of rare earth optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 228-241.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | National Standardization Technical Committee. Quantities and units: GB/T 39131-2020 [S]. Beijing: China Standard Press, |
2020. | |
[2] | Wang Y, Sun C T, Zhang W, et al. Rare earth crystal materials and their applications [J]. Journal of Technology, 2019, 19(1): |
1-13. | |
王燕, 孙丛婷, 张伟, 等. 稀土晶体材料与应用[J]. 应用技术学报, 2019, 19(1): 1-13. | |
[3] | Xu L L, Sun C T, Xue D F. Recent advances in rare earth crystals [J]. Journal of the Chinese Society of Rare Earths, 2018, |
36 | (1): 1-17. |
徐兰兰, 孙丛婷, 薛冬峰. 稀土晶体研究进展[J]. 中国稀土学报, 2018, 36(1): 1-17. | |
[4] | Sun C T, Xue D F. Study on the crystallization process of function inorganic crystal materials [J]. Scientia Sinica Technologica, |
20 | 14, 44(11): 1123-1136. |
孙丛婷, 薛冬峰. 无机功能晶体材料的结晶过程研究[J]. 中国科学: 技术科学, 2014, 44(11): 1123-1136. | |
[5] | Chen K F, Hu J L, Zhang Y B, et al. Current R&D status and future trends of rare earth crystal materials [J]. Inorganic |
Chemicals Industry, 2020, 52(3): 11-16. | |
陈昆峰, 胡家乐, 张一波, 等. 稀土晶体材料研发现状与未来展望[J]. 无机盐工业, 2020, 52(3): 11-16. | |
[6] | Hu J L, Xue D F. Research progress on the characteristics of rare earth ions and rare earth functional materials [J]. Chinese |
Journal of Applied Chemistry, 2020, 37(3): 245-255. | |
胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学, 2020, 37(3): 245-255. | |
[7] | Sun C T, Li K Y, Xue D F. Searching for novel materials via 4 f chemistry [J]. Journal of Rare Earths, 2019, 37(1): 1-10. |
[8] | Xue D F, Sun C T, Chen X Y. Hybridized valence electrons of 4 f 0−145d0−16s2: The chemical bonding nature of rare earth |
elements [J]. Journal of Rare Earths, 2017, 35(9): 837-843. | |
[9] | Li K Y, Xue D F. Estimation of electronegativity values of elements in different valence states [J]. Journal of Physical Chemistry |
A, 2006, 110(39): 11332-11337. | |
[10] | Li Z, Yuan Y J. Mode-locked Nd:YAG laser pumped by LD [J] . Chinese Journal of Quantum Electronics, 2011, 28(3): 298- |
302. | |
黎章, 袁易君. LD 抽运锁模Nd:YAG 激光器研究[J]. 量子电子学报, 2011, 28(3): 298-302. | |
[11] | Gao J Y, Zhang Q L, Hu L S, et al. Energy levels and crystal-field calculation for Nd3+ in Gd3Ga5O12 single crystal [J]. Chinese |
Journal of Quantum Electronics, 2011, 28(2): 218-229. | |
[12] | Li J H, Wang S H, Nie Y, et al. Optical absorption properties for Nd:YVO4 laser crystals near 808 nm wavelength [J]. Chinese |
Journal of Quantum Electronics, 2014, 31(2): 154-159. | |
[13] | Yang X D, Chen X B, Chen L, et al. Progress in near-infrared quantum cutting of Tb3+-Yb3+ ion pair [J]. Chinese Journal of |
Quantum Electronics, 2014, 31(4): 466-471. | |
杨晓冬, 陈晓波, 陈栾, 等. Tb3+-Yb3+ 离子对的近红外量子剪裁研究进展[J]. 量子电子学报, 2014, 31(4): 466-471. | |
[14] | Ning K J, Zhang Q L, Sun D L, et al. Preparation, structure and spectral properties for Yb3+:GdGaGe2O7 [J]. Chinese Journal |
of Quantum Electronics, 2011, 28(2): 234-240. | |
宁凯杰, 张庆礼, 孙敦陆, 等. Yb3+:GdGaGe2O7 制备、结构及光谱性能[J]. 量子电子学报, 2011, 28(2): 234-240. | |
[15] | Yang J M, Liu D H, Liu J. Thermal effects of Yb3+:Y2SiO5 lasers [J]. Chinese Journal of Quantum Electronics, 2013, 30(3): |
29 | 3-297. |
杨济民, 刘丹华, 刘杰. 掺镱硅酸钇晶体的激光热效应研究[J]. 量子电子学报, 2013, 30(3): 293-297. | |
[16] | Nuernisha Alifu, Jin C J. LSPR-enhanced upconversion luminescence of NaYF4:Yb, Er nanoparticles and its application [J]. |
Chinese Journal of Quantum Electronics, 2013, 30(6): 641-650. | |
努尔尼沙•阿力甫, 金崇君. 基于局域表面等离子体增强的NaYF4:Yb, Er 荧光上转换及其应用[J]. 量子电子学报, 2013, | |
30 | (6): 641-650. |
[17] | Zhao H Y, Yi Y T, Wang X, et al. Triple-wavelength lasing at 1.50 μm, 1.84 μm and 2.08 μm in a Ho3+/Tm3+ co-doped |
fluorozirconate glass microsphere [J]. Journal of Luminescence, 2019, 219: 116889. | |
[18] | Hu M Y, Wang Y, You Z Y, et al. Influence of codoped Gd3+ ions on the spectroscopic site symmetry of Dy3+ ions in LaF3 |
single crystals [J]. Journal of Materials Chemistry C, 2019, 7(43): 13432-13439. | |
[19] | Hu M Y, Wang Y, Zhu Z J, et al. Investigation of mid-IR luminescence properties in Dy3+/Tm3+-codoped LaF3 single crystals |
[J] | Journal of Luminescence, 2019, 207: 226-230. |
[20] | Ma M J, Ye B, Ma X M, et al. Electro-optically Q-switched 2.94 μm Er:YAG laser and its applications [J]. Chinese Journal of |
Quantum Electronics, 2010, 27(6): 688-692. | |
马明俊, 叶兵, 麻晓敏, 等. 2.94 μm Er:YAG 电光调Q 激光器及应用研究[J]. 量子电子学报, 2010, 27(6): 688-692. | |
[21] | Wei H B, Guo Q, Zhu C J, et al. Characterization of Er3+ 2.79 μm rotating mirror Q-switched laser [J]. Chinese Journal of |
Quantum Electronics, 2014, 31(5): 563-568. | |
魏昊波, 郭强, 朱成君, 等. Er3+ 2.79 μm 激光器转镜调Q 系统特性分析[J]. 量子电子学报, 2014, 31(5): 563-568. | |
[22] | Huang L, Guo Q, Luo J Q, et al. Spectroscopic properties analysis and laser characteristic simulation of Er:GSGG crytsal [J]. |
Chinese Journal of Quantum Electronics, 2012, 29(1): 45-51. | |
黄荔, 郭强, 罗建乔, 等. Er:GSGG 晶体的光谱性质分析及激光特性模拟研究[J]. 量子电子学报, 2012, 29(1): 45-51. | |
[23] | Zhou P Y, Zhang Q L, Ning K J, et al. Preparation, structual and spectral properties of LaLu0.7Er0.3O3 polycrystalline [J]. |
Chinese Journal of Quantum Electronics, 2013, 30(2): 162-168. | |
周鹏宇, 张庆礼, 宁凯杰, 等. LaLu0.7Er0.3O3 纳米多晶的制备、结构和光谱特性[J]. 量子电子学报, 2013, 30(2): 162-168. | |
[24] | Hu J L, Wang H L, Liang X T, et al. Progress of multiscale materials crystallization [J]. Scientia Sinica Technologica, 2020, |
50 | (6): 650-666. |
胡家乐, 王汇霖, 梁晰童, 等. 材料多尺度结晶研究进展[J]. 中国科学: 技术科学, 2020, 50(6): 650-666. | |
[25] | Sun C T, Xue D F. Perspectives of multiscale rare earth crystal materials [J]. CrystEngComm, 2019, 21: 1838. |
[26] | Sun C T, Xue D F. Crystal growth: An anisotropic mass transfer process at the interface [J]. Physical Chemistry Chemical |
Physics, 2017, 19: 12407-12413. | |
[27] | Ye X Y, Luo Y, Liu S B, et al. Experimental study and thermodynamic calculation of Lu2O3-SiO2 binary system [J]. Journal |
of Rare Earths, 2017, 35(9): 927-933. | |
[28] | Tu C Y, Zhu Z J, Li J F, et al. GdAl3(BO3)4 and its Nd-activated ion doped frequency-doubled and self-converting laser crystal |
[J] | Journal of Synthetic Crystals, 2019, 48(10): 1843-1853. |
涂朝阳, 朱昭捷, 李坚富, 等. GdAl3(BO3)4 和Nd 离子掺杂的倍频与自变频激光晶体研究[J]. 人工晶体学报, 2019, | |
48 | (10): 1843-1853. |
[29] | Sastry B S R, Hummel F A. Studies in lithium oxide systems: I Li2O-Li2O·B2O3 [J]. Journal of the American Ceramic Society, |
20 | 10, 42(5): 216-218. |
[30] | Tu H, Hu Z G, Zhao Y, et al. Growth of large aperture LBO crystal applied in high power OPCPA schemes [J]. Journal of |
Crystal Growth, 2020, 546: 125728. | |
[31] | Lian Y S, Wang Y, Li J F, et al. Structural and fluorescence features of Dy3+:Y4Al2O9 phosphors for yellow color emitting |
displays [J]. Vacuum, 2020, 173: 109165. | |
[32] | Cai X Y, Wang Y, Li J F, et al. Crystal growth and spectroscopic investigations of Dy:YAlO3 and Dy, Tm:YAlO3 crystals for 3 |
μm laser application [J]. Journal of Luminescence, 2020, 225: 117328. | |
[33] | Cai X Y, Wang Y, Li J F, et al. Enhanced broadband 3 μm emission in Yb3+/Dy3+:YAlO3 crystal under 979 nm excitation [J]. |
Vacuum, 2020, 181: 109647. | |
[34] | Olga F, Hans J, Thomas L, et al. The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations |
in the Y-Al-O system [J]. Scandinavian Journal of Metallurgy, 2001, 30: 175-183. | |
[35] | Xue D F. Design and simulation of crystal materials [J]. Journal of Synthetic Crystals, 2007, 36(4): 743-749. |
薛冬峰. 晶体材料的设计与模拟[J]. 人工晶体学报, 2007, 36(4): 743-749. | |
[36] | Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to fast single crystal growth of rare |
earth inorganic materials [J]. Scientia Sinica Chimica, 2018, 48(8): 804-814. | |
孙丛婷, 薛冬峰. 结晶生长的化学键合理论及其在稀土晶体快速生长中的应用[J]. 中国科学: 化学, 2018, 48(8): 804-814. | |
[37] | Xue D F, Sun C T. The growth of low-cost rare-earth scintillation crystals [P]. China Patent: CN105714374A, 2016. |
[38] | Xue D F, Sun C T. Rare earth scintillation crystal prepared by using low cost rare earth material and its low cost growth process |
[P] | China Patent: CN105543963A, 2016. |
[39] | Sun C T, Xue D F. Chemical bonding theory of single crystal growth and its application to ϕ3′′ YAG bulk crystal [J]. CrystEngComm, |
20 | 14, 16: 2129-2135. |
[40] | Yang G L, Han J F, Li X W, et al. Growth of 8 inch Yb:YAG single crystal by Czochralski method [J]. Journal of Synthetic |
Crystals, 2019, 48(7): 1216-1217. | |
杨国利, 韩剑锋, 李兴旺, 等. 提拉法生长直径8 inch Yb:YAG 激光晶体[J]. 人工晶体学报, 2019, 48(7): 1216-1217. | |
[41] | Li N, Liu B, Shi J J, et al. Research progress of rare-earth doped laser crystals in visible region [J]. Journal of Inorganic |
Materials, 2019, 34(6): 573-589. | |
李纳, 刘斌, 施佼佼, 等. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589. | |
[42] | Yu H. Investigation on Spectral Properties and Visible Laser Performance of Re (Pr, Eu, Dy) Doped Calcium Fluoride Crystals |
[D] | Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2019. |
于浩. Re (Pr, Eu, Dy):CaF2 晶体光谱与可见光激光性能研究[D]. 上海: 中国科学院上海硅酸盐研究所, 2019. | |
[43] | Zhang Y X. Exploration of Pr3+ Ion Doped Laser Crystals and Their Pulse Laser Characterization Pumped by Blue Semiconductor |
[D] | Jinan: Shandong University, 2019. |
张玉霞. 掺镨离子激光晶体探索及其蓝光半导体直接泵浦脉冲激光特性研究[D]. 济南: 山东大学, 2019. | |
[44] | Ju Q J, Shen H, Yao W M, et al. Laser diode pumped Dy:YAG yellow laser [J]. Chinese Journal of Laser, 2017, 44(4): 23-28. |
鞠乔俊, 沈华, 姚文明, 等. 半导体激光抽运Dy: YAG 黄光激光器[J]. 中国激光, 2017, 44(4): 23-28. | |
[45] | Li C L, Yao W M, Chen J S, et al. All-solid-state yellow-laser characteristics based on co-doped Dy-Tb:YAG crystal [J]. |
Chinese Journal of Laser, 2019, 46(11): 61-66. | |
李长磊, 姚文明, 陈建生, 等. 基于共掺杂Dy-Tb: YAG 晶体的全固态黄光激光特性研究[J]. 中国激光, 2019, 46(11): | |
61 | -66. |
[46] | Nie H K. Study on 3 μm Band Laser Characteristics of Ho3+, Pr3+ Co-doped Fluoride Crystal [D]. Jinan: Shandong University, |
2020. | |
聂鸿坤. Ho3+, Pr3+ 共掺氟化物晶体3 μm 波段激光特性研究[D]. 济南: 山东大学, 2020. | |
[47] | Zhang P X, Li S M, Yang Y L, et al. Growth and performance optimization of mid-infrared fluoride laser crystal [J]. Journal |
of Synthetic Crystals, 2020, 49(8): 1369-1378. | |
张沛雄, 李善明, 杨依伦, 等. 中红外氟化物激光晶体的生长和性能优化研究[J]. 人工晶体学报, 2020, 49(8): 1369-1378. | |
[48] | Tao X T, Wang S P, Wang L, et al. Research in crystal materials: From bulk crystals to micro-nano crystals [J]. Journal of |
Synthetic Crystals, 2019, 48(5): 763-786. | |
陶绪堂, 王善朋, 王蕾, 等. 晶体材料研究-从体块晶体到微纳米晶体[J]. 人工晶体学报, 2019, 48(5): 763-786. | |
[49] | Ren G H. Development history of inorganic scintillation crystals in China [J]. Journal of Synthetic Crystals, 2019, 48(8): 1373- |
1385. | |
任国浩. 无机闪烁晶体在我国的发展史[J]. 人工晶体学报, 2019, 48(8): 1373-1385. | |
[50] | Zhang M R. Research status and development trend of non-fluorinated halide scintillation crystals [J]. Journal of Synthetic |
Crystals, 2020, 49(5): 753-770. | |
张明荣. 非氟卤化物闪烁晶体的研究现状和发展趋势[J]. 人工晶体学报, 2020, 49(5): 753-770. | |
[51] | Meng M, Qi Q, He C J, et al. Influence of defects on the luminescence properties of Gd3(Al, Ga)5O12:Ce scintillation crystals |
[J] | Acta Physical Sinica, DOI: 10.7498/aps.70.20201697 |
孟猛, 祁强, 赫崇君, 等. Gd3(Al, Ga)5O12: Ce 闪烁晶体缺陷对其发光性能的影响[J]. 物理学报. | |
DOI:10.7498/aps.70.20201697. | |
[52] | Shinozaki K, Okada G, Sato K, et al. Impact of crystallization method on the strain, defect formation, and thermoluminescence |
of YAG:Ce crystals [J]. Journal of Alloys Compounds, 2020, 849: 156600. | |
[53] | Lee S, Kim K Y, Lee M S, et al. Recovery of inter-detector and inter-crystal scattering in brain PET based on LSO and GAGG |
crystals [J]. Physics in Medicine & Biology, 2020, 65(19): 195005. | |
[54] | Wang Q Q, Shi J, Li H Y, et al. Optical and scintillation properties of Cs2LiYCl6:Ce crystal [J]. Journal of Inorganic Materials, |
20 | 17, 32(2): 175-179. |
王晴晴, 史坚, 李焕英, 等. Cs2LiYCl6:Ce 闪烁晶体的光学及闪烁性能[J]. 无机材料学报, 2017, 32(2): 175-179. | |
[55] | Wang S H, Wu Y T, Li H Y, et al. Effect of Ce3+ doping concentration on scintillation performance of Cs2LiYCl6 crystal [J]. |
Journal of the Chinese Society of Rare Earths, 2020, 38(6): 759-767. | |
王绍涵, 吴云涛, 李焕英, 等. Ce3+ 掺杂浓度对Cs2LiYCl6 晶体闪烁性能的影响[J]. 中国稀土学报, 2020, 38(6): 759-767. | |
[56] | Pan S K, Zhang P, Zhu H B, et al. Crystal growth, luminescence and scintillation properties of mixed Ce:Cs2LiLaxY1−xCl6 |
(0 < x ≤ 0.4) scintillators [J]. Journal of Luminescence, 2018, 201: 211-216. | |
[57] | Yu Y Y, Zhu H B,Wang H Y, et al. Growth and scintillation properties of RbY2Cl7:Ce crystal [J]. Journal of Synthetic Crystals, |
20 | 20, 49(5): 780-784. |
俞云耀, 朱贺炳, 王昊宇, 等. RbY2Cl7:Ce 晶体的生长和闪烁性能研究[J]. 人工晶体学报, 2020, 49(5): 780-784. | |
[58] | Feofilov S P, Kulinkin A B. Anti-Stokes fluorescence of Cr3+ ions doped crystals excited in one-phonon vibronic sidebands [J]. |
Optical Materials, 2019, 94: 231-236. | |
[59] | Mobini E, Rostami S, Peysokhan M, et al. Laser cooling of ytterbium-doped silica glass [J]. Communications Physics, 2020, |
3( | 1): 1-6. |
[60] | Seletskiy D, Melgaard S, Bigotta S, et al. Laser cooling of solids to cryogenic temperatures [J]. Nature Photonics, 2010, 4(3): |
16 | 1-164. |
[61] | Rahman A T M A, Barker P F. Laser refrigeration, alignment and rotation of levitated Yb3+:YLF nanocrystals [J]. Nature |
Photonics, 2017, 11(10): 634-638. | |
[62] | Zhong B, Lei Y Q, Luo H, et al. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration [J]. Journal of |
Luminescence, 2020, 226: 117472. | |
[63] | Loiko P, Doualan J L, Guillemot L, et al. Emission properties of Tm3+-doped CaF2, KY3F10, LiYF4, LiLuF4 and BaY2F8 |
crystals at 1.5 μm and 2.3 μm [J]. Journal of Luminescence, 2020, 225: 117279. | |
[64] | Wang J Q. Study on Photoluminescence Characteristics of High Brightness Solid-state Green Light [D]. Chongqing: |
Chongqing University, 2019. | |
王家庆. 高亮度固态绿光光源光致发光特性研究[D]. 重庆: 重庆大学, 2019. | |
[65] | Pan F L, Cao D H, Guo X C, et al. High-lumen-density light source based on Ce:YAG fluorescent crystal [J]. Laser & |
Optoelectronics Progress, 2019, 56(21): 188-193. | |
潘富林, 曹顿华, 郭向朝, 等. 基于Ce:YAG 荧光晶体的高流明密度光源[J]. 激光与光电子学进展, 2019, 56(21): 188-193. | |
[66] | Hu P, Ding H, Liu Y F, et al. Recent progress of YAG:Ce3+ for white laser diode lighting application [J]. Chinese Journal of |
Luminescence, 2020, 41(12): 1504-1528. | |
胡盼, 丁慧, 刘永福, 等. YAG: Ce3+ 在激光照明应用中的研究进展[J]. 发光学报, 2020, 41(12): 1504-1528. | |
[67] | LYU Q Y, Xue B G,Wang T T, et al. Research progress of YAG:Ce fluorescent films for white lighting [J]. Chinese Journal of |
Luminescence, 2020, 41(11): 1323-1334. | |
吕清洋, 薛秉国, 王婷婷, 等. 白光照明用YAG: Ce 荧光薄膜研究进展[J]. 发光学报, 2020, 41(11): 1323-1334. | |
[68] | Zheng Z H, Zhang X, Xu X K, et al. Thickness and surface roughness effect on lighting performance of Ce3+:YAG transparent |
ceramics based high power LED and LD lighting prototype devices [J]. Chinese Journal of Luminescence, 2020, 41(11): 1411- | |
1420. | |
郑哲涵, 张翔, 徐小科, 等. 基于Ce3+:YAG 透明陶瓷的大功率LED 和LD 照明原型器件的发光性能:厚度和表面粗糙 | |
度的影响[J]. 发光学报, 2020, 41(11): 1411-1420. | |
[69] | Guo J Y, Tudi A, Han S J, et al. Sn2B5O9Cl: A material with large birefringence enhancement activated prepared via alkalineearth- |
metal substitution by Tin [J]. Angewandte Chemie International Edition, 2019, 58(49): 1-5. |
[1] | HU Zexiong , , YOU Libing , ∗ , CUN Chao , WANG Hongwei , FAN Jun , WANG Qi , ZHANG Yanlin , FANG Xiaodong , . Time-delay synchronization system with low jitter for excimer laser [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 69-78. |
[2] | ZHANG Chao, HAN Yashuai, ZHOU Zhengxian, QU Jun ∗. Trapping of two types of Rayleigh particles using focused twisted Hermite-Gaussian-Schell model beam [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 742-751. |
[3] | TENG Hao, LU Xin, SHEN Zhongwei, CHEN Shiyou, CHEN Rongyi, WEI Wenshou, WEI Zhiyi. Properties of long plasma-channel generated by TW femtosecond laser in natural environmental air [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 513-523. |
[4] | WANG Yushuang, CHEN Ziyang∗, LIU Yongxin, PU Jixiong∗. Propagation of laser through turbulent atmosphere and scattering medium [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 534-546. |
[5] | ZHU Wenyue, ∗, WANG Huihua, CHEN Xiaowei, ∗, QIAN Xianmei, . Uncertainty analysis of evaluation of high power laser propagation in atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 524-533. |
[6] | YANG Xuezong, ∗, FENG Yan∗. Diamond Raman Lasers for Sodium Guide Star [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 447-455. |
[7] | SHAO Jiadi, XIE Chenbo, LI Lu, ZHUANG Peng, FANG Zhiyuan, FU Songlin, CAO Ye, YANG Jing. Structural Design and Detection of Solid-etalon in Space-borne Lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 235-241. |
[8] | Cao Mingpo, Hu Mingyong, Zhao Chuchu, Lv Min,Zhang Jian,Wang Wei. Research on Dual Wavelength Laser Coupling Confocal System [J]. Chinese Journal of Quantum Electronics, 2019, 36(5): 556-561. |
[9] | TAO Binkai1,2, CHEN Qunfeng1. Transportable 30 cm optical cavity [J]. Chinese Journal of Quantum Electronics, 2019, 36(3): 299-304. |
[10] | . Near-infrared quantum cutting luminescence of Er3+ (10%): tellurium glass [J]. J4, 2017, 34(3): 257-263. |
[11] | HUANG Minsong, LEI Hengchi, CHEN Jiatian, ZHANG Xiaoqing. Application and Design for an Imaging Measurement System Based on Photodiode Array [J]. J4, 2015, 32(5): 620-626. |
[12] | ZHONG Dongzhou, WANG Yuqing . Manipulation of laser polarization based on the linear electro-optic effect with quasi-phase matching [J]. J4, 2015, 32(5): 555-562. |
[13] | XU Chun-yu, SHI Meng, YAN Ke-zhu. Effect of annealing on crystal structure and photoluminescence of Eu3+ doped ZnO thin films [J]. J4, 2014, 31(6): 690-695. |
[14] | Nuernisha Alifu, JIN Chong-jun. LSPR-enhanced upconversion luminescence of NaYF4:Yb,Er nanoparticles and its application [J]. J4, 2013, 30(6): 641-650. |
[15] | . Structural and spectral properties of LaLu0.7Er0.3O3 polycrystalline [J]. J4, 2013, 30(2): 162-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||