Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (3): 354-364.doi: 10.3969/j.issn.1007-5461.2021.03.012
• Quantum Optics • Previous Articles Next Articles
WANG Ruicong1,2∗, FENG Yan1,3
Received:
2020-06-10
Revised:
2020-10-19
Published:
2021-05-28
Online:
2021-05-28
CLC Number:
WANG Ruicong, ∗, FENG Yan, . Secure multi-party quantum sorting protocol based on quantum summation[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 354-364.
[1] | Cheng C, Luo Y L, Chen C X, et al. Research on secure multi-party ranking problem and secure selection problem [C]. |
International Conference on International Conference on Web Information Systems and Mining, 2010: 79-84. | |
[2] | Wang N, Gu H M, Zheng T. A practical and efficient secure multi-party sort protocol [J]. Computer Applications and Software, |
20 | 18, 35(10): 305-311. |
王宁, 顾昊旻, 郑彤. 一种实用高效的安全多方排序协议[J]. 计算机应用与软件, 2018, 35(10): 305-311. | |
[3] | Li S D, Zhang X P. Secure multi-party computation protocol for sorting problem [J]. Journal of Xi’an Jiaotong University, |
20 | 08, 42(2): 231-233, 255. |
李顺东, 张选平. 排序问题的多方保密计算协议[J]. 西安交通大学学报, 2008, 42(2): 231-233, 255. | |
[4] | Yao A C. Protocols for secure computations [C]. Annual Symposium on Foundations of Computer Science, 1982, 54: 160-164. |
[5] | GoodrichMT. Zig-zag sort: A simple deterministic data-oblivious sorting algorithm running in O(nlogn) time [C]. Proceedings |
of the Annual ACM Symposium on Theory of Computing, 2014, 46: 684-693. | |
[6] | Xiao Q, Luo S S, Chen P, et al. Research on secure multi party scheduling problem under semi honest model [J]. Acta |
Electronica Sinica, 2008, 36(4): 709-714. | |
肖倩, 罗守山, 陈萍, 等. 半诚实模型下安全多方排序问题的研究[J]. 电子学报, 2008, 36(4): 709-714. | |
[7] | Qiu M, Luo S S, Liu W, et al. Using RSA cryptosystem to solve secure multi party multi data sorting problem [J]. Acta |
Electronica Sinica, 2009, 37(5): 1119-1123. | |
邱梅, 罗守山, 刘文. 利用RSA 密码体制解决安全多方多数据排序问题[J]. 电子学报, 2009, 37(5): 1119-1123. | |
[8] | Shi B S, Jiang Y K, Guo G C. Manipulating the frequency-entangled states by an acoustic-optical modulator [J]. Physical |
Review A, 2000, 61(6): 064102. | |
[9] | Xue P, Li C F, Guo G C. Addendum to efficient quantum-key-distribution scheme with nonmaximally entangled states [J]. |
Physical Review A, 2002, 65(3): 034302. | |
[10] | Yang Y G, Wen Q Y, Zhu F C. Optimal inclusive teleportation of a d-dimensional two particle unknown quantum state [J]. |
Chinese Physics B (English Version), 2006, 15(5): 907-911. | |
[11] | YangY G, Wen Q Y, Zhu F C. An efficient two step quantum key distribution protocol with orthogonal product states [J]. |
Chinese Physics B (English Version), 2007, 16(4): 910-914. | |
[12] | Cleve R, Gottesman D, Lo H K. How to share a quantum secret [J]. Physical Review Letters, 1999, 83(3): 648-651. |
[13] | Lu H, Zhang Z, Chen L K, et al. Secret sharing of a quantum state [J]. Physical Review Letters, 2016, 117(3): 030501. |
[14] | Ain N U. A novel approach for secure multi-party secret sharing scheme via quantum cryptography [C]. 2017 International |
Conference on Communication, Computing and Digital Systems (C-CODE). IEEE, 2017: 112-116. | |
[15] | Shi R H. Research on Quantum Secret Sharing and Other Multi-Party Quantum Cryptography Protocols [D]. Hefei: University |
of Science and Technology of China, 2011. | |
石润华. 量子秘密共享及其它多方量子密码协议研究[D]. 合肥: 中国科学技术大学, 2011. | |
[16] | Majumder A, Mohapatra S, Kumar A. Experimental realization of secure multiparty quantum summation using five-qubit IBM |
quantum computer on cloud [J]. 2017, arXiv: 1707. 07460. | |
[17] | Zhong H, Huang L S, Luo Y L. Multi candidate electronic election scheme based on secure multi-party summation [J]. Computer |
Research and Development, 2006, 43(8): 1405-1410. | |
仲红, 黄刘生, 罗永龙. 基于安全多方求和的多候选人电子选举方案[J]. 计算机研究与发展, 2006, 43(8): 1405-1410. | |
[18] | Zhang Y H. Research on the Choice of Protecting Private Information [D]. Anhui: Anhui University, 2014. |
张永华. 保护私有信息的选择问题研究[D]. 安徽: 安徽大学, 2014. | |
[19] | Zhang H X, Lu Z C. The ordering problem of quantization [J]. Journal of Hangzhou University (Natural Science Edition), |
19 | 97, 24(3): 226-229. |
张洪宪, 陆志成. 量子化的排序问题[J]. 杭州大学学报(自然科学版), 1997, 24(3): 226-229. | |
[20] | Liu W, Wang Y B. Research on secure multiparty quantum scheduling problem [J]. Acta Physica Sinica, 2011, 60(7): 53-60. |
刘文, 王永滨. 保密多方量子排序问题的研究[J]. 物理学报, 2011, 60(7): 53-60. | |
[21] | Qian X Q. Research on Secure Multiparty Ordering [D]. Anhui: Anhui University, 2013. |
钱小强. 安全多方排序的研究[D]. 安徽: 安徽大学, 2013. | |
[22] | Shi R H, Mu Y, Zhong H, et al. Secure multiparty quantum computation for summation and multiplication [J]. Scientific |
Reports, 2016, 6(1): 28-34. | |
[23] | Yang H Y, Ye T Y. Secure multi-party quantum summation based on quantum Fourier transform [J]. Quantum Information |
Processing, 2018, 17(6): 1-17. | |
[24] | Du J Z, Chen X B, Wen Q Y, et al. Secure multiparty quantum summation [J]. Acta Physica Sinica, 2007, 56(11): 6214-6219. |
杜建忠, 陈秀波, 温巧燕, 等. 保密多方量子求和[J]. 物理学报, 2007, 56(11): 6214-6219. | |
[25] | Overill R E. Review: Foundations of cryptography, volume II: Basic applications [J]. Journal of Logic and Computation, 2005, |
15 | (3): 218-229. |
[26] | Shen M Y, Cheng X Y, Guan Z J, et al. Realization method of two-dimensional nearest neighbor for quantum circuits [J]. |
Chinese Journal of Quantum Electronics, 2019, 36(4): 476-482. | |
沈鸣燕, 程学云, 管致锦, 等. 一种量子线路二维近邻实现方法[J]. 量子电子学报, 2019, 36(4): 476-482. | |
[27] | Dai J, Li Z Q, Pan S H, et al. Deutsch-Jozsa algorithm realization based on IBM Q [J]. Chinese Journal of Quantum Electronics, |
20 | 20, 37(2): 202-209. |
戴娟, 李志强, 潘苏含, 等. 基于IBM Q 的Deutsch-Jozsa 算法实现[J]. 量子电子学报, 2020, 37(2): 202-209. | |
[28] | Wei J, Ni M, Zhou M, et al. Research of quantum algorithm based on IBM Q platform [J]. Computer Engineering, 2018, |
44 | (12): 6-12. |
卫佳, 倪明, 周明, 等. 基于IBM Q 平台的量子算法研究[J]. 计算机工程, 2018, 44(12): 6-12. |
[1] | ZHOU Xiantao, JIANG Yinghua ∗ , GUO Chenfei, ZHAO Ning, LIU Biao. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775. |
[2] | TAN Yeteng, PU Tao∗, ZHENG Jilin, ZHOU Hua, SU Guorui. Realization method of PSK quantum-noise randomized cipher system [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 423-430. |
[3] | ZHANG Ziping1,LIU Guojun1,LU Xu2,HUANG Xing3,LIU Yun4. Security Performance Analysis of Quantum Key Distribution Protocol Based on Depolarization Channel [J]. Chinese Journal of Quantum Electronics, 2019, 36(4): 464-470. |
[4] | . An efficient quantum double sequential blind signature protocol based on oblivious quantum key distribution [J]. J4, 2018, 35(5): 567-575. |
[5] | . Quantum key distribution protocol with two-way identity authentication [J]. J4, 2018, 35(1): 49-53. |
[6] | . A secure quantum voting protocol based on four-particle GHZ-state [J]. J4, 2017, 34(6): 721-727. |
[7] | YAO Hongdi, ZOU Hai, DU Chengbin. A quantum multi-proxy blind signature scheme with multiplayer verification [J]. J4, 2016, 33(6): 711-717. |
[8] | . Efficient Quantum Sequential Multi-signature Protocol [J]. J4, 2016, 33(3): 329-337. |
[9] | WANG Hui, SHI Run-hua, ZHONG Hong, CUI Jie, ZHANG Shun, WANG Kai-ting. Quantum Proxy Blind Signature Based on W State [J]. J4, 2016, 33(1): 35-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||