Chinese Journal of Quantum Electronics ›› 2021, Vol. 38 ›› Issue (5): 580-592.doi: 10.3969/j.issn.1007-5461.2021.05.003
Previous Articles Next Articles
CHENG Yuan1, ZHANG Zhen1, HUA Dengxin1;2, GONG Zhenfeng1, MEI Liang1∗
Received:
2021-04-02
Revised:
2021-05-11
Published:
2021-09-28
Online:
2021-09-28
CLC Number:
CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592.
[1] Ionov D V, Timofeyev Y M, Sinyakov V P, et al. Ground‐based validation of EOS‐Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) [J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D15).[2] Wenig M O, Cede A M, Bucsela E J, et al. Validation of OMI Tropospheric NO2 Column Densities Using Direct-Sun Mode Brewer Measurements at Nasa Goddard Space Flight Center [J]. Journal of Geophysical Research-Atmospheres, 2008, 113(D16).[3] Valks P, Pinardi G, Richter A, et al. Operational total and tropospheric NO2 column retrieval for Gome-2 [J]. Atmospheric Measurement Techniques, 2011, 4(7):1491-1514.[4] Anand J S, Monks P S, Leigh R J. An improved retrieval of tropospheric NO2 from space over polluted regions using an Earth radiance reference [J]. Atmospheric Measurement Techniques, 2015, 8(3):1519-1535.[5] Hu S X, Liu Q W, Chen Y F, et al. SO2/NO2 detection lidar technology based on the dye laser [J]. 2016 Annual Conference of Chinese Society for Environmental Sciences, 2016:291-297.胡顺星, 刘秋武, 陈亚峰, 等, 基于染料激光的SO2/NO2探测激光雷达技术 [J]. 中国环境科学学会2016年学术年会, 2016:291-297.[6] Beirle S, Kuhl S, Pukite J, et al. Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements [J]. Atmospheric Measurement Techniques, 2010, 3(1):283-299.[7] Zien A W, Richter A, Hilboll A, et al. Systematic analysis of tropospheric NO2 long-range transport events detected in GOME-2 satellite data [J]. Atmospheric Chemistry and Physics, 2014, 14(14):7367-7396.[8] Yin X K, Zheng H D, Dong L, et al. Design and optimization of off-beam NO2 QEPAS sensor by use of E-MOCAM with a high power blue laser diode [J]. Acta Phys. Sin., 2015, 64(13):130701.[9] Yi H, Liu K, Chen W, et al. Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy [J]. Opt Lett, 2011, 36(4):481-483.[10] Hao N, Zhou B, Chen D, et al. Measurements of NO2, SO2, O3, benzene and toluene using differential optical absorption spectroscopy (DOAS) in Shanghai, China [J]. Ann. Chim., 2006, 96(7-8):365-375. [11] Berg N, Mellqvist J, Jalkanen J P, et al. Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms [J]. Atmospheric Measurement Techniques, 2012, 5(5):1085-1098.[12] Rothe K W, Brinkmann U, Walther H. Applications of tunable dye lasers to air pollution detection: measurements of atmospheric NO2 concentrations by differential absorption [J]. Appl. Phys., 1974, 3:115–119.[13] Galle B, Sunesson A, Wendt W. NO2-mapping using laser radar techniques [J]. Atmos. Environ., 1988, 22(3):569-573.[14] Boersma K, Jacob D, Trainic M, et al. Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities [J]. Atmospheric Chemistry and Physics, 2009, 9(12):3867-3879.[15] Vlemmix T, Piters A J M, Berkhout A J C, et al. Ability of the MAX-DOAS method to derive profile information for NO2: can the boundary layer and free troposphere be separated? [J]. Atmospheric Measurement Techniques, 2011, 4(12):2659-2684.[16] Gruzdev A N, Elokhov A S. Validation of Ozone Monitoring Instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia [J]. International Journal of Remote Sensing, 2010, 31(2):497-511.[17] Schotland R M, Sassen K, Stone R. Observations by lidar of linear depolarization ratios for hydrometeors [J]. Journal of Applied Meteorology, 1971, 10(5):1011-1017.[18] Measures R M, Pilon G. A study of tunable laser techniques for remote mapping of specific gaseous constituents of the atmosphere [J]. Optoelectron, 1972, 4:141-153.[19] Ahmed S A. Molecular air pollution monitoring by dye laser measurement of differential sbsorption of stmospheric elastic backscatter [J]. Appl. Opt, 1973, 12:901.[20] Byer R L and Garbuny M. Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors [J]. Applied Optics, 1973, 12(7):1496-1505.[21] Mei L, Brydegaard M. Continuous-wave differential absorption lidar [J]. Laser & Photon. Rev., 2015, 9(6):629-636.[22] Hall T C, Blacet F E. Separation of the absorption spectra of NO2 and N2O4 in the range of 2400–5000A [J]. The Journal of Chemical Physics, 1952, 20(11):1745-1749.[23] Ambrico P F. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region [J]. Applied Optics, 2000, 39(36):6847-6865.[24] Xu L. Mid-infrared differential absorption lidar control software and experimental research [D]. Nanjing: Nanjing University of Information Technology, 2018.徐玲, 中红外差分吸收激光雷达控制软件和实验研究 [J]. 南京: 南京信息工程大学,2018.[25] Xu L, Bu L B, Cai G Z, et al. Mid-infrared differential absorption lidar NO2 measurement wavelength selection and detection capability simulation [J]. Infrared and Laser Engineering, 2018, 47:77-84.徐玲, 卜令兵, 蔡镐泽, 等, 中红外差分吸收激光雷达NO2测量波长选择及探测能力模拟 [J]. 红外与激光工程, 2018, 47:77-84.[26] Cai G Z, Bu L B, Gong Y, et al. Absorption spectrum characteristics of NO2 at 3.4μm and its application in differential absorption lidar [J]. Acta Photonica Sinica, 2019, 48:207-215.蔡镐泽, 卜令兵, 龚宇, 等, 3.4um处NO2吸收光谱特性及在差分吸收激光雷达中的应用 [J]. 光子学报, 2019, 48:207-215.[27] Gong Y, Bu L, Yang B, et al. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection [J]. Sensors (Basel), 2020, 20(8).[28] Cao N, Fukuchi T, Fujii T, et al. Error analysis for NO2 DIAL measurement in the troposphere [J]. Applied Physics B - Lasers and Optics, 2006, 82(1):141-148.[29] Cao N W, Fujii T, Fukuchi T, et al. Estimation of differential absorption lidar measurement error for NO2 profiling in the lower troposphere [J]. Optical Engineering, 2002, 41(1):218-224.[30] Cheng Y, Zhang Z, Kong Z, et al. Evaluation of systematic errors for the continuous-wave NO2 differential absorption lidar employing a multimode laser diode [J]. Appl Opt, 2020, 59(29):9087-9097. [31] Staehr W, Lahmann W, Weitkamp C. Range-resolved differential absorption lidar - optimazation of range and sensitivity [J]. Applied Optics, 1985, 24(13):1950-1956.[32] Rothe K W, Brinkmann U, Walther H. Remote measurement of NO2 emission from a chemical factory by the differential absorption technique [J]. Applied Physics, 1974, 4(2):181-182.[33] Grant W B, Hake R D, Liston E M, et al. Calibrated remote measurement of NO2 using the differential absorption backscatter technique [J]. Applied Physics Letters, 1974, 24(11):550-552.[34] Inomata H, Igarashi T. Study of laser radar system using differential absorption method for detection of air-pollutions [J]. Japanese Journal Of Applied Physics, 1975, 14(11):1751-1760.[35] Tsuji T, Kimura H, Higuchi Y, et al. NO2 concentration measurement in atmosphere using differential absorption dye-laser radar technique [J]. Japanese Journal Of Applied Physics, 1976, 15(9):1743-1752.[36] Fredriksson K A, Galle B, Nystrom K, et al. Mobile lidar system for environmental probing [J]. Appl. Opt., 1981, 20 (24):4181-4189.[37] Fredriksson K A, Hans M H. Evaluation of the DIAL technique for studies on NO2 using a mobile lidar system [J]. Appl. Opt, 1984, 23:1403-1411.[38] Kolsch H J, Rairoux P, Wolf J P, et al. Simultaneous NO and NO2 DIAL measurement using BBO crystals [J]. Applied Optics, 1989, 28(11):2052-2056.[39] Toriumi R, Tai H, Takeuchi N. Tunable solid-state blue laser differential absorption lidar system for NO2 monitoring [J]. Optical Engineering, 1996, 35(8):2371-2375.[40] Nayuki T, Fukuchi T, Cao N, et al. Sum-frequency-generation system for differential absorption lidar measurement of atmospheric nitrogen dioxide [J]. Applied Optics, 2002, 41(18):3659-3664.[41] Nayuki T, Marumoto K, Fujii T, et al. Development of a differential-absorption Lidar system for measurement of atmospheric atomic mercury by use of the third harmonic of an LDS-dye laser [J]. Applied Optics, 2004, 43(35):6487-6491.[42] Gimmestad G G, Tan D, Roberts D W. Development of a differential absorption lidar for NO2 Monitoring [J]. 21st International Laser Radar Conference (ILRC21), 2002, 1:193-196[43] Hu S X, Hu H L, Zhang Y C, el al. A new differential absorption lidar for NO2 measurements using Raman-shifted technique [J]. Chinese Optics Letters, 2003, 1:435-437.[44] Zhang Y, Hu H, Tan K, et al. A mobile lidar system for air pollution measurement [J]. SPIE Asia-Pacific Remote Sensing, 2003.[45] Zhang Y C, Hu H L, Tan K, el al. AML-1 Development of a vehicle-mounted air pollution monitoring lidar prototype [J]. Acta Optics, 2004, (08):1025-1031.张寅超, 胡欢陵, 谭锟, 等. AML-1车载式大气污染监测激光雷达样机研制 [J]. 光学学报, 2004, (08):1025-1031.[46] Zhang Y C, Hu H L, Tan K, el al. Development of the prototype of the vehicle-mounted air pollution monitoring lidar [J]. Optoelectronics Technology and Information, 2001, (03):1-5.张寅超, 胡欢陵, 谭锟, 等. 车载大气污染监测激光雷达样机研制进展 [J]. 光电子技术与信息, 2001, (03):1-5.[47] Zhang Y C, Hu H L, Shao S S, el al. Lidar monitoring experiment of atmospheric SO2, NO2 and O3 in Beijing [J]. Journal of Quantum Electronics, 2006, (03):346-350.张寅超, 胡欢陵, 邵石生, 等. 北京市大气SO2、NO2和O3的激光雷达监测实验 [J]. 量子电子学报, 2006, (03):346-350.[48] Du X Y, Zhang Y C, Qu K F, el al. Vehicle-mounted lidar detects NO2 in the lower atmosphere [J]. Journal of Atmospheric and Environmental Optics, 2006, (05):97-100.杜小勇, 张寅超, 屈凯峰, 等. 车载激光雷达探测低层大气中NO2 [J]. 大气与环境光学学报, 2006, (05):97-100.[49] Choi S C, Ko D K, Lee J, et al. The Development of a Mobile Remote Monitoring System by Using Differential Absorption Lidar Technology [J]. Journal Of the Korean Physical Society, 2006, 49(1):331-336.[50] Volten H, Brinksma E J, Berkhout A J C, et al. No2 Lidar Profile Measurements for Satellite Interpretation and Validation [J]. Journal of Geophysical Research-Atmospheres, 2009, 114:D24301.[51] Liu Q W, Wang X B, Chen Y F, et al. Differential absorption lidar based on dye laser detects atmospheric NO2 concentration [J]. Acta Photonica Sinica, 2017:228-345.刘秋武, 王晓宾, 陈亚峰, 等, 基于染料激光器的差分吸收激光雷达探测大气NO2浓度 [J]. 光学学报, 2017:338-345.[52] Hu S X, Liu Q W, Chen Y F, et al. SO2/NO2 detection lidar technology based on dye laser [J]. 2016 Annual Conference of Chinese Society for Environmental Sciences, 2016:291-297.胡顺星, 刘秋武, 陈亚峰, 等, 基于染料激光的SO2/NO2探测激光雷达技术 [J]. 中国环境科学学会2016年学术年会, 2016:291-297.[53] Liu Q, Chen Y, Wang J, et al. Measurement of Atmospheric No2 Profile Using Three-Wavelength Dual-Differential Absorption Lidar [J]. Proc. SPIE, 2017, 10605:106053L.[54] Mei L, Guan P, Kong Z. Remote Sensing of Atmospheric NO2 by Employing the Continuous-Wave Differential Absorption Lidar Technique [J]. Opt Express, 2017, 25(20):A953-A962.[55] Mei L. The research progress and technology of Slidar [J]. Progress in Laser and Optoelectronics, 2018, 55:090004.梅亮. 沙氏大气激光雷达技术及其研究进展 [J]. 激光与光电子学进展, 2018, 55:090004. |
[1] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[2] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[3] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[4] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[5] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[6] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[7] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[8] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
[9] | WANG Yingjian, ∗, SHI Dongfeng, . Atmospheric Effects on Optical Imaging and Correction Techniques [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 409-417. |
[10] | HU Shuai, ∗, LIU Lei, ∗, LIU Xichuan, GAO Taichang, . Progress of measurement techniques of multi-angle scattering properties of atmospheric particles [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 477-496. |
[11] | HUANG Yinbo, CAO Zhensong, ∗, LU Xingji, HUANG Jun, LIU Qiang, DAI Congming, HUANG Honghua, Zhu Wenyue, RAO Ruizhong, WANG Yingjian, . Measurement of high-resolution total atmospheric transmittance and retrieval of water vapor with laser heterodyne technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 497-505. |
[12] | QIANG Xiwen, ZONG Fei, ZHAI Shengwei, FENG Shuanglian, WU Min, CHANG Jinyong, ZHANG Zhigang, HU Yuehong. Simulating and Measuring of Atmospheric Turbulence in Laboratory [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 506-512. |
[13] | GUAN Zhongyin, LI Bao, QIAN Jiali, DENG Lunhua, XU Huailiang, . Study on formation of CN radical in mixture of nitrogen and methane [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 144-149. |
[14] | LUO Jie, HOU Zai-hong, JING Xu WANG Zhen-dong, AN Yan-yang, QIN Lai-an WU Yi, QIU Chen-xiang, . Advances in Coherent Laser Wind Measurement Technology [J]. Chinese Journal of Quantum Electronics, 2020, 37(2): 129-137. |
[15] | LI Nan, QIAO Chunhong, ZHANG Pengfei, FENG Xiaoxing, FAN Chengyu. Research of Laser Propagation in the Non-Kolmogorov Turbulence Atmosphere and its Phase Compesation [J]. Chinese Journal of Quantum Electronics, 2019, 36(6): 745-751. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||