Chinese Journal of Quantum Electronics ›› 2022, Vol. 39 ›› Issue (1): 32-49.doi: 10.3969/j.issn.1007-5461.2022.01.002
Previous Articles Next Articles
ZHOU Zhiyuan ∗ , SHI Baosen ∗
Received:
2021-08-26
Revised:
2021-10-14
Published:
2022-01-28
Online:
2022-01-28
CLC Number:
ZHOU Zhiyuan ∗ , SHI Baosen ∗. Recent progress on frequency conversion of orbital angular momentum carrying light[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 32-49.
[1] Franken P A, Hill A E, Peters C W, et al.Generation of optical harmonics [J]. [J].Physical Review Letters, 1961, 7:118- [2]Alnis J, Gustafsson U, Somesfalean G, et al.Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm [J]. Applied Physics Letters, 2000, 76:1234. [3]Wang Z, Zhang J, Yang F, et al.Stable operation of 4 mW nanoseconds radiation at 177.3 nm by Second Harmonic Generation in KBe2BO3F2 Crystals [J]. Optics Express 17(22):20021-20032. [4]Li Y, Zhou Z Y, Ding D S, et al.Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity [J]. Chinese Optics Letters, 2014, 12: 111901. [5]Peng Y, Wang W, Wei X, et al.High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN[J].Optics Letters, 2009, 34(19):2897-2899 [6]Kumar S C, and Ebrahim-Zadeh M.High-power,continuous-wave,mid-infrared optical parametric oscillator based on MgO:sPPLT[J].Optics Letters, 2011, 36(13):2578-2580 [7]Yang C, Liu S L, Zhou Z Y, et al.Extra-cavity-enhanced difference-frequency generation at 163 μm[J].Journal of the Optical Society of America B, 2020, 37(5):1367-1371 [8] Picqué? N and H?nsch T W.Frequency comb spectroscopy [J]. Nature Photonics 2019, 13:146-157. [9] Fortier T and Baumann E.20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, (2019) 2:153. [10]Alfano R R.The Supercontinuum Laser Source [M]. New York: Springer, 2005. [11]Kwiat P G, Mattle K, Weinfurter H, et al.New high-intensity source of polarization-entangled photon pairs [J]. Physics Review Letters, 1995, 75(24), 4337–4341. [12]Li Y H, Zhou Z Y, Feng L T, et al.On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire [J]. Physics Review Applied, 2017, 7: 064005. [13]Li Y, Zhou Z Y, Ding D S, et al.CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer [J]. Optics Express, 2015, 23:28792~28800. [14]Wang J, Paesani S, Ding Y, et al.Multidimensional quantum entanglement with large-scale integrated optics[J].Science, 2018, 360(6386):285-291 [15]Sala K, Kenney-Wallace G and Hall G.CW autocorrelation measurements of picosecond laser pulses [J] IEEE Journal of Quantum Electronics, 1980, 16( 9): 990-996. [16]Trebino R, DeLong K W, Fittinghoff D N, et al.Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating [J]. Review of Scientific Instruments, 1997, 68:3277. [17]Hoover E E, and Squier J A.Advances in multiphoton microscopy technology [J]. Nature Photonics, 2013, 7: 93–101. [18]Kumar P.Quantum frequency conversion[J]. Optics Letters, 1990, 15: 1476-1478. [19]Mancinelli M, Trenti A, Piccione S, et al.Mid-infrared coincidence measurements on twin photons at room temperature[J]. Nature Communications, 2017, 8:15184. [20]Zhou Z Y, Liu S L, Liu S K, et al.Superresolving Phase Measurement with Short-Wavelength NOON States by Quantum Frequency Up-Conversion [J]. Physics Review Applied, 2017, 7: 064025. [21]Forbes A, de Oliveira M and Dennis M R.Structured light [J]. Nature Photonics, 2021, 15: 253–262. [22]Allen L, Beijersbergen M W, Spreeuw R J C, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].Physics Review A, 1992, 45(11):8185-8189 [23]Franke-Arnold S, Allen L, and Padgett M.Advances in optical angular momentum[J].Laser Photonics Review, 2008, 2(4):299-313 [24]Shen Y, Wang X, Xie Z, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8 :90. [25]Courtial J, and Padgett M J.Performance of a cylindrical lens mode converter for producing [J]. Optics Communications, 1999, 159: 13-18. [26]Maji S, Mandal A, And Brundavanam M M.Gouy phase-assisted topological transformation of vortex beams from fractional fork holograms[J].Optics letters, 2019, 44(9):2286-2289 [27] Marrucci L.The q-plate and its future [J]. Journal of Nanophotonics, 2013, 7: 078598. [28]Kotlyar V V, Almazov A A, Khonina S N, et al.Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J].Journal of the Optical Society of America A, 2005, 22(5):849-861 [29]Maurer C, Jesacher A, Bernet S, et al.What spatial light modulators can do for optical microscopy[J].Laser & Photonics Reviews, 2011, 5(1):81-101 [30]Cai X, Wang J, Strain M J, et al.Integrated Compact Optical Vortex Beam Emitters[J].Science, 2012, 338(6105):363-366 [31]Stav T, Faerman A, Maguid E, et al.Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J].Science, 2018, 361(6407):1101-1104 [32]Zhang Z, Qiao X, Midya B, et al.Tunable topological charge vortex microlaser[J].Science, 2020, 368(6492):760-763 [33]Ficklera R, Campbelld G, Buchlerd B, et al.Quantum entanglement of angular momentum states with quantum numbers up to 10,010[J].PNAS, 2016, 113(48):13642-13647 [34] Liu M, Zhu W, Huo P, et al.Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states [J]. Light: Science & Applications, 2021, 10:107. [35] Naidoo D, .Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10: 327–332. [36]Vickers J, Burch M, Vyas R, et al.Phase and interference properties of optical vortex beams[J].Journal of the Optical Society of America A, 2008, 25(3):823-827 [37] Leach J, Courtial J, Skeldon K, et al.Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon [J]. Physics Review Letters, 2004, 92: 013601. [38]Leach J, Padgett M J, Barnett S M, et al.Measuring the orbital angular momentum of a single photon [J]. Physics Review Letters, 2202. 88: 257901. [39] Zhang W, Qi Q, Zhou J et al.Mimicking Faraday rotation to sort the orbital angular momentum of light [J]. Physics Review Letters, 2014, 112: 153601. [40]Zhou Y, Mirhosseini M, Fu D, et al.Sorting Photons by Radial Quantum Number [J]. Physics Review Letters, 2017, 119: 263602. [41] Wei S, Earl S K, Lin J, et al.Active sorting of orbital angular momentum states of light with a cascaded tunable resonator [J]. Light: Science & Applications, 2020, 9 :10. [42]Li Y, Zhou Z Y, Ding D S, et al.Non-destructive splitter of twisted light based on modes splitting in a ring cavity[J].Optics Express, 2016, 24(3):2166-2173 [43]Berkhout G C G, Lavery M P J, Courtial J, et al.Efficient sorting of orbital angular momentum states of light[J] Physics Review Letters, 2010, 105:153601. [44] Mirhosseini M, Malik M, Shi Z, et al.Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4: 2781. [45] Wen Y, Chremmos I, Chen Y, et al.Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes [J]. Physical Review Letters, 2018, 120:193904. [46]Nicolas A, Veissier L, Giacobino E, Maxein D, et al.Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique [J]. New Journal Physics, 2015, 17: 033037. [47]Schulze C, Dudley A, Brüning R, et al.Measurement of the orbital angular momentum density of Bessel beams by projection into a Laguerre–Gaussian basis[J].Applied Optics, 2014, 53(26):5924-5933 [48] Suprano A, Zia D, Polino E, et al.Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes [J]. New Journal Physics, 2021, 23 : 073014. [49] R.W. Boyd, Nonlinear Optics, Third Edition, New York (2007). [50]Armstrong J A, Bloembergen N, Ducuing J, et al.Interactions between light waves in a nonlinear dielectric [J]. Physics Review, 1962, 127:1918. [51] Fejer M M, Magel G A, Jundt D H, et al.Quasi-phase-matched second harmonic generation: tuning and tolerances [J]. IEEE Journal Quantum Electronics, 1992, 28: 2631. [52]Courtial J, Dholakia K, Allen L, et al.Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes[J].Physical Review A, 1997, 56(5):4193-4196 [53] Shao G H, Wu Z J, Chen J H, et al.Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase matching, Physics Review A, 2013, 88: 063827. [54] Zhou Z Y, Ding D S, Jiang Y K, et al.Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals [J]. Optics Express, 2014, 22: 20298~20310. [55]Li Y, Zhou Z Y, Ding D S, et al.Sum frequency generation with two orbital angular momentum carrying laser beams [J]. Journal Optical Society America B, 2015, 32: 407~411. [56] Li Y, Zhou Z Y, Ding D S, et al.Dynamic mode evolution and phase transition of twisted light in nonlinear process [J]. Journal of Modern Optics, 2016, 63: 2271~2278. [57]Ge Z, Zhou Z Y, Li Y, et al.Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals[J].Optics Letters, 2021, 46(2):158-161 [58]Fang X, Yang G, Wei D, et al.Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal[J].Optics Letters, 2016, 41(6):1169-1172 [59]Wu Y, Ni R, Xu Z, et al.Tunable third harmonic generation of vortex beams in an optical superlattice[J].Optics Express, 2017, 25(25):30820-30826 [60]Fang X, Kuang Z, Chen P, et al.Examining second-harmonic generation of high-order Laguerre–Gaussian modes through a single cylindrical lens[J].Optics Letters, 2017, 42(21):4387-4390 [61]Tang R, Li X, Wu W, et al.High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface[J].Optics Express, 2015, 23(8):9796-9802 [62]Yang C, Zhou Z Y, Li Y, et al.Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop[J].Optics Letters, 2019, 44(2):219-222 [63]Li H, Liu H, and Chen X.Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer [J]. Applied Physics Letters, 2019, 114: 241901. [64] Wu H J, Zhou Z Y, Gao W, et al.Dynamic tomography of the spin-orbit coupling in nonlinear optics [J]. Physical Review A, 2019, 99: 023830. [65]Wu H J, Zhao B, Rosales-Guzmán C, et al.Spatial-Polarization-Independent Parametric Up-Conversion of Vectorially Structured Light [J]. Physical Review Applied, 2020, 13: 064041. [66]Ren Z C, Lou Y C, Cheng Z M, et al.Optical frequency conversion of light with maintaining polarization and orbital angular momentum [J]. Optics Letters, 46(10):2300-2303. [67]Liu H, Li H, Zheng Y, et al.Nonlinear frequency conversion and manipulation of vector beams[J].Optics Letters, 2018, 43(24):5981-5984 [68] Li H, Liu H, Yang Y, et al.Ultraviolet waveband vector beams generation assisted by the nonlinear frequency conversion [J]. Applied Physics Letters, 2021, 119: 011104. [69]Li H, Liu H, and Chen X.Dual waveband generator of perfect vector beams[J].Photonics Research, 2019, 7(11):1340-1344 [70]Zhou Z Y, Li Y, Ding D S, et al.Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity [J]. Optics Express, 2014, 22: 23673~23678. [71] Zhou Z Y, Li Y, Ding D S, et al.Orbital angular momentum photonic quantum interface [J]. Light: Science & Applications, 2016, 5: e16019. [72] Zhou Z Y, Liu S L, Li Y, et al.Orbital Angular Momentum-Entanglement Frequency Transducer [J]. Physics Review Letters, 2016, 117: 103601. [73]Liu S L, Liu S K, Li Y H, et al.Coherent frequency bridge between visible and telecommunications band for vortex light [J]. Optics Express, 2017, 25: 24290~24298. [74]Li Y, Zhou Z Y, Liu S L, et al.Frequency doubling of twisted light independent of the integer topological charge[J].OSA Continuum, 2019, 2(2):470-477 [75] Liu S, Yang C, Xu Z, et al.High-dimensional quantum frequency converter [J]. Physics Review A, 2020, 101:012339. [76]Dada A C, Leach J, Buller G S, et al.Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities [J]. Nature Physics, 2011, 7: 677. [77]Malik M, Erhard M, Huber M, et al.Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10: 248. [78]Yao A M.Angular momentum decomposition of entangled photons with an arbitrary pump [J]. New Journal of Physics, 2011, 13: 053048. [79]Zhou Z Y, Li Y, Ding D S, et al.Classical to quantum optical network link for orbital angular momentum-carrying light[J].Optics Express, 2015, 23(14):18435-18444 [80]Liu S, Zhou Z, Liu S, et al.Coherent manipulation of a three-dimensional maximally entangled state [J]. Physical Review A, 2018, 98: 062316. [81]Kovlakov E V, Straupe S S, and Kulik S P.Quantum state engineering with twisted photons via adaptive shaping of the pump beam [J]. Physical Review A, 2018, 98, 060301(R). [82]Liu S, Zhang Y, Yang C, et al.Increasing two-photon entangled dimensions by shaping input-beam profiles [J]. Physical Review A, 2020, 101: 052324. [83]Chong A, Wan C, Chen J, et al.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum [J]. Nature Photonics, 2020, 14:350–354. [84]Gui G, Brooks N J, Kapteyn H C, et al.Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light [J]. Nature Photonics, 2021, 15: 608–613. [85]Tang Y, Li K, Zhang X, et al.Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals [J]. Nature Photonics, 2020, 14: 658–662. [86]Chen P, Ma L L, Duan W, et al.Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing [J]. Advanced Materials, 2018, 30:1705865. [87]Qiu X, Li F, Liu H, et al.Optical vortex copier and regenerator in the Fourier domain[J].Photonics Research, 2018, 6(6):641-646 [88]Wei D, Guo J, Fang X, et al.Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal[J].Optics Express, 2017, 25(10):11556-11563 [89]Wei D, Wang C, Wang H, et al.Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal [J]. Nature Photonics, 2018, 12: 596–600. [90] Wei D, Wang C, Xu X, et al.Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals [J]. Nature Communications, 2019, 10: 4193. [91] Chen P, Wang C, Wei D, et al.Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal [J]. Light Science Applications, 2021, 10: 146. [92]Chen R, Ni R, Wu Y, et al.Phase-Matching Controlled Orbital Angular Momentum Conversion in Periodically Poled Crystals [J]. Physical Review Letters, 2020, 125:143901. [93]Hu X, Zhang Y, and Zhu S.Nonlinear Beam Shaping in Domain Engineered Ferroelectric Crystals [J]. Advanced Materials, 2020, 32: 1903775. [94]Sain B, Meier C, Zentgraf T.Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J].Advanced Photonics, 2019, 1(2):024002- [95]Rego L, Dorney K M, Brooks N J, et al.Generation of extreme-ultraviolet beams with time-varying orbital angular momentum [J]. Science, 2019, 364: 1253. [96]Gauthier D, Rebernik Ribic P, Adhikary G, et al.Tunable orbital angular momentum in high-harmonic generation [J]. Nature Communications, 2017, 8:1497. [97]Niu S, Wang S, Ababaike M, et al.Tunable near- and mid-infrared (1.36–1.63 μm and 3.07–4.81 μm) optical vortex laser source [J]. Laser Physics Letters, 2020, 17: 045402. [98]Aadhi A, Sharma V, Singh R P, et al.Continuous-wave,singly resonant parametric oscillator-based mid-infrared optical vortex source[J].Optics Letters, 2017, 42(18):3674-3677 [99]Araki S, Ando K, Miyamoto K, et al.Ultra-widely tunable mid-infrared (6–18 μm) optical vortex source[J].Applied Optics, 2018, 57(4):620-624 |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[8] | HE Yefeng , , LI Lina ∗ , BAI Qian , CHEN Sihao , QIANG Yuwei . Quantum key distribution of detector’s dead time in heralded single photon source [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112-119. |
[9] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[10] | LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879. |
[11] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[12] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[13] | CHEN Rongquan ∗ , CHEN Yuanfu , WANG Qing , WU Zhigang . Propagation properties of off-axis multi-vortex-Gaussian beams in negative refractive index media [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 795-805. |
[14] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[15] | ZHOU Xiantao, JIANG Yinghua ∗ , GUO Chenfei, ZHAO Ning, LIU Biao. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||