[1] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5):R3429-R3432.[2] Bennink R S, Bentley S J, Boyd R W. “Two-Photon” Coincidence Imaging with a Classical Source[J]. Physical Review Letters, 2002, 89(11):113601.[3] Gibson G M , Sun B , Edgar M P , et al. Real-time imaging of methane gas leaks using a single-pixel camera[J]. Optics Express, 2017, 25(4):2998-3005.[4] Chan W L, Charan K, Takhar D, et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 2008, 93(12): 121105.[5] Watts C M, Shrekenhamer D, Montoya J, et al. Terahertz compressive imaging with metamaterial spatial light modulators[J]. Nature Photonics, 2014, 8(8): 605.[6] Stantchev R I, Sun B, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science advances, 2016, 2(6): 1600190.[7] Welsh S S , Edgar M P , Bowman R , et al. Fast full-color computational imaging with single-pixel detectors[J]. Optics Express, 2013, 21(20):23068-23074. [8] Bian L , Suo J , Situ G , et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6:24752.[9] Zha L, Shi D, Huang J, et al. Single-pixel tracking of fast-moving object using geometric moment detection[J]. Optics Express, 2021, 29(19): 30327-30336.[10] Sun S, Lin H, Xu Y, et al. Tracking and imaging of moving objects with temporal intensity difference correlation[J]. Optics express, 2019, 27(20): 27851-27861.[11] Shi D, Yin K, Huang J, et al. Fast tracking of moving objects using single-pixel imaging[J]. Optics Communications, 2019, 440: 155-162.[12] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature communications, 2016, 7(1): 1-6.[13] Soltanlou K, Latifi H. Three-dimensional imaging through scattering media using a single pixel detector[J]. Applied optics, 2019, 58(28): 7716-7726.[14] Zhang Z, Liu S, Peng J, et al. Simultaneous spatial, spectral, and 3D compressive imaging via efficient Fourier single-pixel measurements[J]. Optica, 2018, 5(3): 315-319.[15] Gong W, Zhao C, Yu H, et al. Three-dimensional ghost imaging lidar via sparsity constraint[J]. Scientific reports, 2016, 6: 26133.[16] Dai H, Gu G, He W, et al. Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation[J]. Optics express, 2016, 24(23): 26080-26096.[17] Pawlikowska A M, Halimi A, Lamb R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics express, 2017, 25(10): 11919-11931.[18] Huang J, Shi D, Yuan K, et al. Three-dimensional Fourier ghost imaging[J]. Optik, 2020, 219: 165149.[19] Huang J, Shi D. Multispectral computational ghost imaging with multiplexed illumination[J]. Journal of Optics, 2017, 19(7): 075701.[20] Huang J, Shi D, Meng W, et al. Spectral encoded computational ghost imaging[J]. Optics Communications, 2020, 474: 126105.[21] Dongfeng S, Jian H, Yingjian W, et al. Simultaneous fusion, imaging and encryption of multiple objects using a single-pixel detector[J]. Scientific reports, 2017, 7(1): 1-10.[22] Zhang J, Zhao D, Gao W. Group-based sparse representation for image restoration[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351.[23] Gong W, Han S. A method to improve the visibility of ghost images obtained by thermal light[J]. Physics Letters A, 2010, 374(8): 1005-1008. |