Chinese Journal of Quantum Electronics ›› 2022, Vol. 39 ›› Issue (6): 863-879.doi: 10.3969/j.issn.1007-5461.2022.06.004
Previous Articles Next Articles
LIN Huizu 1,2∗ , LIU Weitao 1,2∗ , SUN Shuai 1,2 , DU Longkun 1,2 , CHANG Chen 1,2,3 , LI Yuegang 1,2
Received:
2022-03-03
Revised:
2022-04-24
Published:
2022-11-28
Online:
2022-12-14
CLC Number:
LIN Huizu , ∗ , LIU Weitao , ∗ , SUN Shuai , , DU Longkun , , CHANG Chen , , LI Yuegang , . Progress of algorithms used in ghost imaging[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 863-879.
[1]Brown R H, Twiss R Q.Correlation between photons in twocoherent beams of light[J].Nature, 1956, 177(4497):27-29 [2]Hanbury Brown R, Twiss R Q.The question of correlationbetween photons in coherent light rays[J].Nature, 1956, 178(4548):1447-1448 [3]Strekalov D V, Sergienko A V, Klyshko D N, et al.Observation of two-photon "ghost'' interference and diffraction[J].Physical Review Letters, 1995, 74(18):3600-3603 [4]Pittman T B, Shih Y H, Strekalov D V, et al.Optical imagingby means of two-photon quantum entanglement[J].PhysicalReview A, 1995, 52(5):R3429-R3432 [5]Bennink R S, Bentley S J, Boyd R W.quot;Two-photon''coincidence imaging with a classical source[J].Physical Review Letters, 2002, 89(11):113601-113605 [6]Cheng J, Han S.Incoherent coincidence imaging and itsapplicability in X-ray diffraction[J].Physical Review Letters, 2004, 92(9):093903-093911 [7]Gatti A, Brambilla E, Bache M, et al.Ghost imaging withthermal light: Comparing entanglement and classicalcorrelation[J].Physical Review Letters, 2004, 93(9):093602-093605 [8]Strekalov D V, Sergienko A V, Klyshko D N, et al.Observation of Two-Photon "Ghost" Interference and Diffraction[J].Physical Review Letters, 1995, 74(18):3600-3603 [9]D' Angelo M, Chekhova M V, Shih Y H.Two-photon diffraction and quantum lithography[J].Physical Review Letters, 2001, 87(1):013602-013606 [10]Xiong J, Cao D Z, Feng H, et al.Experimental observation of classical subwavelength interference with a pseudothermal light source[J].Physical Review Letters, 2005, 94(17):173601-173604 [11]Cheng Jing and Han Shensheng.Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction[J].Physical Review Letters, 2004, 92(9):93903-93903 [12]Yu H, Lu R, Han S, et al.Fourier-transform ghost imaging withhard X rays[J].Physical Review Letters, 2016, 117(11):113901-113904 [13]Pelliccia D, Rack A, Scheel M, et al.Experimental X-Ray Ghost Imaging[J].Physical Review Letters, 2016, 117(11):113902-113905 [14]Klein Y, Schori A, Dolbnya I P, et al.X-ray computationalghost imaging with single-pixel detector[J].Opt Express, 2019, 27(3):3284-3293 [15]Zhang A X, He Y H, Wu L A, et al.Tabletop x-ray ghostimaging with ultra-low radiation[J].Optica, 2018, 5(4):374-377 [16]闫昱琪,赵成强,徐文东,李硕丰,严海月.太赫兹主动关联成像技术研究[J].中国激光, 2018, 45(8):0814001-0814001 [17]查国峰.运动目标微波关联成像技术研究[D].国防科学技术大学博士学位论文, 2016, :- [18]周小利.基于稀疏性的微波关联成像理论与方法[D].国防科学技术大学博士学位论文, 2017, :- [19]陈颖.微波关联成像方法研究[D].西安电子科技大学硕士学位论文, 2018, :- [20]Li S, Cropp F, Kabra K, et al.Electron ghost imaging[J].Physical Review Letters, 2018, 121(11):114801-114801 [21]Khakimov R I, Henson B M, Shin D K, et al.Ghost imagingwith atoms[J].Nature, 2016, 540(7631):100-103 [22]He Y H, Huang Y Y, Zeng Z R, et al.Single-pixel imagingwith neutrons[J].Science Bulletin, 2021, 66(2):133-138 [23]Kingston A M, Myers G R, Pelliccia D, et al.Neutron ghost imaging[J].Physical Review A, 2020, 101(5):053844-053844 [24]Gong W, Han S.Correlated imaging in scattering media[J].Optics letters, 2011, 36(3):394-396 [25]Xu Y K, Liu W T, Zhang E F, et al.Is ghost imaging intrinsically more powerful against scattering?[J].Optics express, 2015, 23(26):32993-33000 [26]Tan W, Huang X, Nan S, et al.Effect of the collection range of a bucket detector on ghost imaging through turbulent atmosphere[J].JOSA A, 2019, 36(7):1261-1266 [27]Wu, J; Hu, L.Wang,J.Fast Tracking and Imaging of a Moving Object with Single-Pixel Imaging[J].Opt. Express, 2021, 29(26):42589-42595 [28]Shuai Sun, Huizu Lin, Yaokun Xu, et al.Tracking and imaging of moving objects with temporal intensity difference correlation[J].Optics Express, 2019, 27(20):27851-27861 [29]Shuai Sun, Junhao Gu, Huizu Lin, et al.Gradual ghost imaging of moving objects by tracking based on cross correlation[J].Optics Letters, 2019, 44(22):5594-5599 [30]Dong L, Ding Y, Shuai S, YueGang L, Liang J, HuiZu L, WeiTao L etal.Enhancing robustness of ghost imaging against environment noise via cross-correlation in time domain[J].Optics Express, 2021, 29(20):31068-31077 [31]Wang, L; Zhao, S.Fast Reconstructed and High-Quality Ghost Imaging with Fast Walsh–Hadamard Transform[J].Photonics Res., 2016, 4(6):240-246 [32]Xi, M; Chen, H.Yuan,Y; Wang,G.; He,Y.; Liang,Y.; Liu,J.; Zheng,H.; Xu,Z..Bi-Frequency 3D Ghost Imaging with Haar Wavelet Transform[J].Opt. Express, 2019, 27(22):32349-32345 [33]Chen, Y; Liu, S; Yao, X.-R.; Zhao, Q.; Liu, X.-F.; Liu, B.; Zhai, G.-J..Discrete Cosine Single-Pixel Microscopic Compressive Imaging via Fast Binary Modulation[J].Opt. Commun., 2020, 454(1):124512-124515 [34]Gu, J; Sun, S.Xu,Y; Lin,H.; Liu,W.Feedback Ghost Imaging by Gradually Distinguishing and Concentrating onto the Edge Area[J].Chin. Opt. Lett., 2021, 19(4):041102-041107 [35]Liu, B; Wang, F.Chen,C; Dong,F.; McGloin,D.Self-Evolving Ghost Imaging[J].Optica, 2021, 8(10):1340-1343 [36]Shuai Sun, Weitao Liu, Huizu Lin, et al.Multi-scale adaptive computational ghost imaging[J].Scientific reports, , : ., 2016, 6(1):37013-37018 [37]Ferri F, Magatti D, Lugiato L A, et al.Differential ghost imaging[J].Physical review letters, 2010, 104(25):253603-253606 [38]Sun B, Welsh S S, Edgar M P, et al.Normalized ghost imaging[J].Optics Express, 2012, 20(15):16892-16901 [39]Shuai Sun, Huizu Lin, Weitao Liu, et al.Ghost imaging normalized by second-order coherence[J].Optics Letters, 2019, 44(24):5993-5996 [40]Ori Katz, Yaron Bromberg, and Yaron Silberberg.Compressive ghost imaging[J].APPLIED PHYSICS LETTERS, 2009, 95(1):131110-131113 [41]Wenlin Gong, Shensheng Han.Experimental investigation of the quality of lensless super-resolution ghost imaging via sparsity constraints[J].Physics Letters A, 2012, 376(1):1519-1522 [42]Gong, W.High-Resolution Pseudo-Inverse Ghost Imaging[J].Photonics Res., 2015, 3(5):234-237 [43]Zhang, C; Guo, S.Cao,J; Guan,J.; Gao,F.Object Reconstitution Using Pseudo-Inverse for Ghost Imaging[J].Opt. Express, 2014, 22(24):30063-30073 [44]Lyu M, Wang W, Wang H, et al.Deep-learning-based ghost imaging[J].Scientific reports, 2017, 7(1):17865-17870 [45]Klyshko D N.Photons Nonlinear Optics [M]. CRC Press, 1988. [46]Valencia A, Scarcelli G, D’Angelo M, et al.Two-photon imaging with thermal light[J].Physical review letters, 2005, 94(6):063601-063604 [47]Sun, M-J.Wang,H-Y.; Huang,J.-Y.Improving the Performance of Computational Ghost Imaging by Using a Quadrant Detector and Digital Micro-Scanning[J].Sci. Rep., 2019, 9(1):4105-4109 [48]Xie, P.Shi,X; Huang,X.; Bai,Y.; Fu,X..Binary Detection in Ghost Imaging with Preserved Grayscale[J].Eur. Phys. J. D, 2019, 73(5):102-107 [49]Emamnuel J.Candès, Compressive sampling [M], Madrid, Spain, 2006. [50]E.J. Candes,and MB. Wakin.An introduction to compressive sampling[J].IEEE Signal Process. Mag., 2008, 25(1):21-30 [51]Petros Zerom, Kam Wai Clifford Chan, John C Howell, and Robert W.BoydEntangled-photon compressive ghost imaging[J].PHYSICAL REVIEW A, 2011, 84(1):061804-061808 [52]Shchepakina E, Korotkova O.Second-order statistics of stochastic electromagnetic beams propagating through non-Kolmogorov turbulence[J].Optics Express, 2010, 18(10):10650-10658 [53]Barbastathis G, Ozcan A, Situ G.On the use of deep learning for computational imaging[J].Optica, 2019, 6(8):921-943 [54]Sinha A, Lee J, Li S, et al.Lensless computational imaging through deep learning[J].Optica, 2017, 4(9):1117-1125 [55]Xue Y, Cheng S, Li Y, et al.Reliable deep-learning-based phase imaging with uncertainty quantification[J].Optica, 2019, 6(5):618-629 [56]Rivenson Y, Liu T, Wei Z, et al.PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning[J].Light: Science & Applications, 2019, 8(1):1-11 [57]Li S, Deng M, Lee J, et al.Imaging through glass diffusers using densely connected convolutional networks[J].Optica, 2018, 5(7):803-813 [58]Li Y, Xue Y, Tian L.Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media[J].Optica, 2018, 5(10):1181-1190 [59]Lyu M, Wang H, Li G, et al.Learning-based lensless imaging through optically thick scattering media[J].Advanced Photonics, 2019, 1(3):036002-036006 [60]He Y, Wang G, Dong G, et al.Ghost imaging based on deep learning[J].Scientific reports, 2018, 8(1):1-7 [61]Lyu M, Wang W, Wang H, et al.Deep-learning-based ghost imaging[J].Scientific reports, 2017, 7(1):1-6 [62]Wang F, Wang H, Wang H, et al.Learning from simulation: An end-to-end deep-learning approach for computational ghost imaging[J].Optics express, 2019, 27(18):25560-25572 [63]Hu H K, Sun S, Lin H Z, et al.Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects[J].Optics Express, 2020, 28(25):37284-37293 [64]Wang, F, Wang, C.Chen,Met al..Far-field super-resolution ghost imaging with a deep neural network constraint[J].Light Sci Appl, 2022, 11(1):1-11 [65]张红伟,郭树旭,张驰,羊超,曹军胜,郜峰利.关联成像目标重构的伪逆迭代降噪方法[J].光子学报, 2017, 46(2):0210001-0210001 [66]郭树旭,张驰,曹军胜,钟 菲,郜峰利.基于压缩感知归一化关联成像实现目标重构[J].光学精密工程, 2015, 23(1):288-294 [67]Yue C, Chen P, Lv X, et al.Object reconstruction using the binomial theorem for ghost imaging[J].IEEE Photonics Journal, 2018, 10(6):1-14 |
[1] | CHEN Liying , HUANG Kun , WANG Qi , YAN Shinong . Design of an integrated vibration detection module based on diamond NV color centers [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 500-509. |
[2] | BAI Hailong , BAI Jinhai , HU Dong , WANG Yu . Design and implementation of a compact microwave synthesizer for atomic interference gravimeter [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 510-518. |
[3] | LI Songsong. Effects of three-body and four-body interactions on spin squeezing and quantum entanglement in Bose-Einstein condensates [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 519-527. |
[4] | LI Yan , . Correlation properties of Bose⁃Fermi mixture with one⁃dimensional strong interaction [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 528-540. |
[5] | WANG Sheng , FANG Xiaoming , LIN Yu , ZHANG Tianbing , FENG Bao , YU Yang , WANG Le . Four-intensity decoy-state phase-matching quantum key distribution [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 541-545. |
[6] | SUN Yishi , SUN Yi . Parameter prediction of classical-quantum signals co-fiber transmission system based on BP neural network [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 546-559. |
[7] | QI Zhiming , LIANG Wenyao . Influence of beam polarizations on holographic fabrication of compound photonic crystals [J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447-457. |
[8] | HE Yefeng , , LI Lina ∗ , BAI Qian , CHEN Sihao , QIANG Yuwei . Quantum key distribution of detector’s dead time in heralded single photon source [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 112-119. |
[9] | GUO Hui ∗ , YE Zhiqiu. Orthogonal optimization of random speckle patterns for computational ghost imaging [J]. Chinese Journal of Quantum Electronics, 2023, 40(1): 48-55. |
[10] | GONG Wenlin ∗ , CHEN Mingliang , HAN Shensheng ∗. Research Progress and Prospect On Ghost Imaging Lidar [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 835-850. |
[11] | TAN Zhijie , YANG Hairui , , YU Hong , , HAN Shensheng , ∗. Progress on X-ray diffraction imaging via intensity correlation [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 851-862. |
[12] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[13] | LI Nengfei , SUN Yusong , , HUANG Jian , ∗. Research on cosine encoded multiplexing high spatial resolution ghost imaging [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 973-982. |
[14] | DAI Pan, PANG Zhiguang, LI Jian, WANG Qin ∗. Nonlinear Bell inequality based on entanglement sources [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 761-767. |
[15] | ZHOU Xiantao, JIANG Yinghua ∗ , GUO Chenfei, ZHAO Ning, LIU Biao. Quantum secure direct communication protocol based on mixture of GHZ particles and single photon [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 768-775. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||