Chinese Journal of Quantum Electronics ›› 2022, Vol. 39 ›› Issue (6): 927-941.doi: 10.3969/j.issn.1007-5461.2022.06.007
Previous Articles Next Articles
MA Huimin 1∗ , TAN Lei 1 , ZHANG Jinghui 2 , ZHANG Pengfei 3 , NING Xiaomei 1 , LIU Haiqiu 1 , GAO Yanwei 1
Received:
2022-07-03
Revised:
2022-07-22
Published:
2022-11-28
Online:
2022-12-14
CLC Number:
MA Huimin ∗ , TAN Lei , ZHANG Jinghui , ZHANG Pengfei , NING Xiaomei , LIU Haiqiu , GAO Yanwei . Review of co-phasing error detection for synthetic aperture imaging system based on deep learning[J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 927-941.
[1] 范文强, 王志臣, 陈宝刚, et al., 地基大口径拼接镜面主动控制技术综述[J]. 中国光学, 2020. 13(6): 1194-1208.[2] 张龙, 王., 程强, 王若秋, 拼接式望远镜光学共相探测技术[J]. 激光与光电子学进展, 2020. 57(23).[3] 吴松航, 董吉洪, 徐抒岩, et al., 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展, 2021. 58(3): 72-83.[4] 董理, 合成孔径望远镜共相误差多谱探测技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所)博士论文, 2019.[5] Chanan, G., M. Troy, F. Dekens, et al., Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 1998. 37(1): 140-155.[6] Chanan, G., C. Ohara, and M. Troy, Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 2000. 39(25): 4706-4714.[7] Chanan, G., M. Troy, and N. Raouf. Phasing the Segments of the Keck and Thirty Meter Telescopes via the Narrowband Phasing Algorithm: Chromatic Effects[C]. in Conference on Ground-Based and Airborne Telescopes VI. 2016. Edinburgh, SCOTLAND.[8] Li, B., W.-H. Yu, M. Chen, et al., Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 2017. 56(32): 8871-8879.[9] Chanan, G. and M. Troy. Chromatic Effects in Narrowband Phasing of the Keck Telescope Segments: Theory and Numerical Simulations[C]. in Conference on Ground-based and Airborne Telescopes VII. 2018. Austin, TX.[10] Chanan, G. and A. Pinto, Efficient method for the reduction of large piston errors in segmented-mirror telescopes[J]. Applied Optics, 2004. 43(16): 3279-3286.[11] Roddier, F., CURVATURE SENSING AND COMPENSATION - A NEW CONCEPT IN ADAPTIVE OPTICS[J]. Applied Optics, 1988. 27(7): 1223-1225.[12] 孟玉凰, 基于色散条纹传感技术的拼接镜共相方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所硕士论文, 2017.[13] 张春悦, 提高基于色散条纹传感器的共相误差检测性能[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所)硕士论文, 2018.[14] Gerchberg, R.W. and W.O. Saxton, A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972. 35: 237-250.[15] 岳丹, 基于相位差算法的拼接镜共相误差探测与图像复原的研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所)博士论文, 2016.[16] 罗群, 相位差波前探测技术及其在拼接镜共相检测中的应用研究[D]. 长沙: 国防科学技术大学博士论文, 2012.[17] Gonsalves, R.A., Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 1982. 21(5): 829-832.[18] Yang, K., Z. Xie, H. Ma, et al., Piston error correction of sparse aperture systems using the metaheuristic stochastic parallel gradient descent algorithm[J]. Applied Optics, 2020. 59(22): 6505-6516.[19] 何小君, 基于随机并行优化算法的光学多孔径成像共相误差校正技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所)硕士论文, 2017.[20] 谢宗良, 相控望远镜阵列成像关键技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所)博士论文, 2018.[21] 杨开元, 基于亚启发式SPGD算法的光学多孔径平移误差探测[D]. 成都: 中国科学院大学(中国科学院光电技术研究所)硕士论文, 2021.[22] Paykin, I., L. Yacobi, J. Adler, et al., Phasing a segmented telescope[J]. Physical review. E, Statistical, nonlinear, and soft matter physics, 2015. 91(2): 023302.[23] 葛英健, 基于改进粒子群算法的相位差共相探测技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所)硕士论文, 2021.[24] Angel, J.R.P., P. Wizinowich, M. Lloyd-Hart, et al., Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 1990. 348(6298): 221-224.[25] Sandler, D.G., T.K. Barrett, D.A. Palmer, et al., Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 1991. 351(6324): 300-302.[26] Barrett, T.K. and D.G. Sandler, Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 1993. 32(10): 1720-1727.[27] Ryan, P.T., R.Q. Fugate, J.R. Angel, et al., Halo characteristics and their influence on companion searches at the starfire optical range[J]. Applied Optics, 1998. 37(30): 7035-7043.[28] Wintoft, P. and G. Dai, Neural network for modal compensation of atmospheric turbulence, in Proceedings of SPIE - The International Society for Optical Engineering. 1994. p. 103-109.[29] Lloydhart, M. and P. McGuire, Spatio-Temporal Prediction For Adaptive Optics Wavefront Reconstructors[J]. Medicine & Health Rhode Island, 1995. 90(3): 72-75.[30] Montera, D.A., B.M. Welsh, M.C. Roggemann, et al., Processing wave-front-sensor slope measurements using artificial neural networks[J]. Applied Optics, 1996. 35(21): 4238-4251.[31] Mello, A., A. Kanaan, D. Guzmán, et al., Artificial neural networks for centroiding elongated spots in Shack–Hartmann wavefront sensors[J]. Monthly Notices of the Royal Astronomical Society, 2014. 440(3): 2781-2790.[32] Weddell, S.J. and R.Y. Webb, Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy, in Proceedings of the Sixth International Conference on Hybrid Intelligent Systems. 2006, IEEE Computer Society. p. 68-75.[33] Osborn, J., F. de Cos Juez, D. Guzman, et al., Using artificial neural networks for open-loop tomography[J]. Optics Express, 2012. 20(3): 2420-2434.[34] Osborn, J., F. de Cos Juez, D. Guzmán, et al., Open-loop tomography with artificial neural networks on CANARY: On-sky results[J]. Monthly Notices of the Royal Astronomical Society, 2014. 441(3): 2508-2514.[35] Gonzalez, C., J.D. Santos, M. Martínez Zarzuela, et al., Comparative Study of Neural Network Frameworks for the Next Generation of Adaptive Optics Systems[J]. Sensors, 2017. 17(6): 1263.1-14.[36] 马慧敏, 焦俊, 乔焰, et al., 一种基于光强图像深度学习的波前复原方法[J]. 激光与光电子学进展, 2020. 57(08): 255-264.[37] Lecun, Y., B. Boser, J. Denker, et al., Backpropagation Applied to Handwritten Zip Code Recognition[J]. Neural Computation, 1989. 1(4): 541-551.[38] Krizhevsky, A., I. Sutskever, and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in IEEE International Conference on Neural Information Processing Systems. 2012. p. 1097-1105 [39] 赵申剑, 黎彧君, 符天凡, et al., Deep Learning深度学习[M]. 2017, 北京: 人民邮电出版社.[40] Lecun, Y., Y. Bengio, and G. Hinton, Deep learning[J]. Nature, 2015. 521(7553): 436-444.[41] Simonyan, K. and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, in International Conference on Learning Representations. 2015. p. arXiv:1409.1556v6.[42] Szegedy, C., W. Liu, Y. Jia, et al., Going Deeper with Convolutions, in IEEE Conference on Computer Vision and Pattern Recognition. 2015: Boston, MA, USA. p. 1-9.[43] He, K., X. Zhang, S. Ren, et al., Deep Residual Learning for Image Recognition, in IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 770-778.[44] Graves, A., A. Mohamed, and G. Hinton, Speech Recognition with Deep Recurrent Neural Networks, in IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. p. 6645-6649.[45] Liang, M. and X. Hu, Recurrent convolutional neural network for object recognition, in IEEE Computer Vision and Pattern Recognition. 2015. p. 3367-3375.[46] Ji, S., W. Xu, M. Yang, et al., 3D Convolutional Neural Networks for Human Action Recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013. 35(1): 221-231.[47] Lohani, S. and R.T. Glasser, Turbulence correction with artificial neural networks[J]. Optics Letters, 2018. 43(11): 2611-2614.[48] Lohani, S., E.M. Knutson, M. O’Donnell, et al., On the use of deep neural networks in optical communications[J]. Applied Optics, 2018. 57(15): 4180-4190.[49] Paine, S.W. and J.R. Fienup, Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 2018. 43(6): 1235-1238.[50] Ma, H., H. Liu, Y. Qiao, et al., Numerical study of adaptive optics compensation based on Convolutional Neural Networks[J]. Optics Communications, 2019. 433(2): 283-289.[51] Nishizaki, Y., M. Valdivia, R. Horisaki, et al., Deep learning wavefront sensing[J]. Optics Express, 2019. 27(1): 240-251.[52] 张之光, 杨慧珍, 刘金龙, et al., 基于深度学习的无波前探测自适应光学系统研究进展[J]. 强激光与粒子束, 2021. 33(08): 53-68.[53] 李自强, 李新阳, 高泽宇, et al., 基于深度学习的自适应光学波前传感技术研究综述[J]. 强激光与粒子束, 2021. 33(08): 5-17.[54] Guerra-Ramos, D., L. Diaz-Garcia, J. Trujillo-Sevilla, et al., Piston alignment of segmented optics mirrors via convolutional neural networks[J]. Optics Letters, 2018. 43(17): 4264-4267.[55] Guerra-Ramos, D., J. Trujillo-Sevilla, and J. Manuel Rodriguez-Ramos, Global piston restoration of segmented mirrors with recurrent neural networks[J]. Osa Continuum, 2020. 3(5): 1355-1363.[56] Guerra-Ramos, D., J. Trujillo-Sevilla, and J. Manuel Rodriguez-Ramos, Towards Piston Fine Tuning of Segmented Mirrors through Reinforcement Learning[J]. Applied Sciences-Basel, 2020. 10(9).[57] Li, D., S. Xu, D. Wang, et al., Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. OPTICS LETTERS, 2019. 44(5): 1170-1173.[58] Ma, X., Z. Xie, H. Ma, et al., Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. OPTICS EXPRESS, 2019. 27(11): 16058-16070.[59] Ma, X., Z. Xie, H. Ma, et al., Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 2020. 128.[60] Hui, M., W. Li, M. Liu, et al., Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network[J]. Applied Optics, 2020. 59(3): 771-778.[61] Hui, M., W. Li, Y. Wu, et al., Breadth-first piston diagnosing approach for segmented mirrors through supervised learning of multiple-wavelength images[J]. Applied Optics, 2020. 59(32): 9963-9970.[62] Tang, J., Z. Ren, X. Wu, et al., Object-independent tilt detection for optical sparse aperture system with large-scale piston error via deep convolution neural network[J]. Optics Express, 2021. 29(25): 41670-41684.[63] Wang, P.-F., H. Zhao, X.-P. Xie, et al., Multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network[J]. Optics Express, 2021. 29(14): 21320-21335.[64] Wang, P., H. Zhao, X. Xie, et al. Large-range piston error detection technology based on dispersed fringe sensor[C]. in 10th International Symposium on Advanced Optical Manufacturing and Testing Technologies - Large Mirrors and Telescopes. 2021. Chengdu, PEOPLES R CHINA.[65] Wang, Y., F. Jiang, G. Ju, et al., Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 2021. 29(16): 25960-25978.[66] Zhao, W., H. Wang, L. Zhang, et al., Piston detection in segmented telescopes via multiple neural networks coordination of feature-enhanced images[J]. Optics Communications, 2022. 507. |
[1] | LIN Bing , FAN Xueqiang , LI Dekui , PENG Zhiyong , GUO Zhongyi ∗. Research Progress of imaging through scattering media based on the deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 880-898. |
[2] | CHEN Jianming , , ZENG Xiangjin , , ZHONG Liyun , , DI Jianglei , ∗ , QIN Yuwen , ∗. Research progress of image registration methods based on deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 899-926. |
[3] | WANG Xiaoyan, WANG Zhiyuan, CHEN Ziyang, PU Jixioing ∗. Detection of orbital angular momentum of multiple vortices from speckle via deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(6): 955-961. |
[4] | LI Tianxiu, SHI Lei ∗ , WANG Junhui, LI Jiahao. Prediction of atmospheric attenuation coefficient of quantum signal based on deep learning [J]. Chinese Journal of Quantum Electronics, 2022, 39(5): 786-794. |
[5] | ZHANG Yang, CHENG Zhengdong, ZHU Bin. Small target detection algorithm of drones based on improved Faster R-CNN [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 354-363. |
[6] | MAO Renxiang, CHANG Jianhua, ZHANG Shuyi, LI Hongxu, ZHANG Luyao. Multi-target real-time tracking system based on 3D-MobileNetv2 [J]. Chinese Journal of Quantum Electronics, 2022, 39(3): 364-372. |
[7] | LI Shichun , ∗ , HUANG Zuxin , SHI Dongdong , XIN Wenhui , , SONG Yuehui , , GAO Fei , , HUA Dengxin , ∗. Investigation on airborne near-infrared polarization lidar for probing supercooled cloud [J]. Chinese Journal of Quantum Electronics, 2021, 38(6): 872-879. |
[8] | CHENG Yuan, ZHANG Zhen, HUA Dengxin, GONG Zhenfeng, MEI Liang∗. Research progress of NO2 differential absorption lidar technology [J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 580-592. |
[9] | ZHANG Qinwei, CAO Lianzhen∗, LIU Xia, YANG Yang, ZHAO Jiaqiang, LI Yingde. Entanglement degradation of photon entangled states in non-Kolmogorov atmospheric turbulence [J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 496-503. |
[10] | LENG Kun, YANG Yuntao, TAN Zhe, GONG Yanchun, WU Wenyuan∗. Evaluation method of laser atmospheric transmission effectiveness based on support vector machine [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 547-555. |
[11] | YANG Yong, CHENG Xuewu, YANG Guotao, XUE Xianghui, LI Faquan∗. Research progress of lidar for upper atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 566-579. |
[12] | ZHOU Zhenglan, ZHOU Yuan, XU Huafeng, QU Jun∗. Research progress of the partially coherent beams with special correlation functions [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 615-632. |
[13] | Basic principle and technical progress of Doppler wind lidar. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 580-600. |
[14] | XI Fengjie, YANG Yi, JING Xu, DU Shaojun, XU Xiaojun. Dispersion influence of horizontal atmospheric refraction on calibration of optical axis [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 386-391. |
[15] | YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere [J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||