量子电子学报 ›› 2024, Vol. 41 ›› Issue (1): 87-94.doi: 10.3969/j.issn.1007-5461.2024.01.008

• 量子光学 • 上一篇    下一篇

10 MHz氢钟信号传递系统

蔡桢荻 1,2, 孙焕尧 1, 陈群峰 1*   

  1. ( 1 中国科学院精密测量科学与技术创新研究院, 湖北 武汉 430071; 2 中国科学院大学, 北京 100049 )
  • 收稿日期:2022-03-31 修回日期:2022-04-22 出版日期:2024-01-28 发布日期:2024-01-28
  • 通讯作者: E-mail: qfchen@apm.ac.cn E-mail:qfchen@wipm.ac.cn
  • 作者简介:蔡桢荻 ( 1996 - ), 女, 湖北武汉人, 研究生, 主要从事锁相相关电路的研究。E-mail: caizhendi@apm.ac.cn
  • 基金资助:
    国家重点研发计划 (2017YFA0304403, 2020YFA0309801), 中国科学院战略性先导科技专项 (B 类) (XDB21010300, XDB21030100), 国 家自然科学基金重大研究计划 (91636110, U1738141)

A 10 MHz hydrogen clock signal transferring system

CAI Zhendi 1,2, SUN Huanyao 1, CHEN Qunfeng 1*   

  1. ( 1 Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China )
  • Received:2022-03-31 Revised:2022-04-22 Published:2024-01-28 Online:2024-01-28

摘要: 为满足同一科研园区内不同建筑之间10 MHz氢钟信号( HCS) 长期稳定度共享的需求, 提出了一种低成 本、集成化的基于光纤链路的10 MHz HCS 传递完整解决方案。该方案采用1 GHz 的射频信号对激光光强进行调 制, 利用光纤实现信号传递。通过将远端反射信号与本地信号和频后直接与待传递的HCS 分频鉴相, 输出误差信 号反馈控制1 GHz 信号的频率, 实现远端1 GHz 信号与本地HCS 之间的相位锁定, 从而使远端1 GHz 信号具有与本 地HCS 相同的频率稳定度; 之后再通过分频器在远端生成10 MHz 信号, 作为射频参考输出。实验验证了该方案的 频率传递保真度, 该系统在200 m 往返光纤上的附加频率稳定度 (艾伦偏差) 为1 s 平均时间2.4 ´ 10-13 和10000 s 平 均时间5.7 ´ 10-17; 在20 km 传递距离上, 附加频率稳定度 (艾伦偏差) 为1 s 平均时间4.8 ´ 10-13 和10000 s 平均时间 2.1 ´ 10-16。研究结果表明该系统的长时间频率传递稳定度优于HCS 的频率稳定度, 可以满足千米范围内氢钟信号 共享的需求。

关键词: 光通信, 氢钟信号传递, 光纤, 锁相环, 噪声补偿

Abstract: In order to meet the long-term frequency stability sharing requirement of 10 MHz hydrogen clock signal (HCS) between different buildings in the same scientific research park, a low-cost and highly integrated solution for optical-fiber-based 10 MHz HCS transferring setup is proposed. In the scheme, a 1 GHz radio-frequency signal (1GRFS) is used to modulate the laser intensity and optical fibers are used for signal transmission. In principle, the sum of the source 1GRFS and signal reflected from remote is frequency-divided firstly and then phase-compared with the HCS to be transferred. Then the error signal from the phase comparator is fed back to modulate the frequency of the 1 GHz oscillator to lock the phase between the remote 1GRFS and the HCS. Therefore, the remote 1GRFS has the same frequency stability as the HCS. Afterwards, a 10 MHz signal is generated at the remote site through a frequency divider as RF reference output. Furthermore, experiments are carried out to verify the precision of the system. It is shown that the additional frequency stability of the HCS transferring system is 2.4 ´ 10-13 at 1 s average time and 5.7 ´ 10-17 at 10000 s average time with a fiber link of 200 m, 4.8 ´ 10-13 at 1 s average time and 2.1 ´ 10-16 at 10000 s average time with a fiber link of 20 km. The verification results prove that the longterm stability of the transferring system is better than the frequency stability of the HCS, indicating that the system can be used for sharing HCS within kilometer range.

Key words: optical communication, hydrogen clock signal transferring, optical fiber, phase-locked loop; noise compensation

中图分类号: