[1]ZHANG Z-J.Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J].Physics Letters A, 2006, 352(1):55-8
[2]LIU J-C, LI Y-H, NIE Y-Y.Controlled Teleportation of an Arbitrary Two-Particle Pure or Mixed State by Using a Five-Qubit Cluster State[J].International Journal of Theoretical Physics, 2010, 49(8):1976-84
[3]MAN Z-X, XIA Y-J, AN N B.Genuine multiqubit entanglement and controlled teleportation[J].Physical Review A, 2007, 75(5):052306-052312
[4]ZHU FU-CHEN D J-Z, CHEN XIU-BO, WEN QIAO-YAN.Probabilistic teleportation of multi-particle partially entangled state[J].Chin Phys B, 2008, 17(3):771-7
[5]YAN F, YAN T.Probabilistic teleportation via a non-maximally entangled GHZ state[J].Chinese Science Bulletin, 2010, 55(10):902-6
[6]ZHA X-W, ZOU Z-C, QI J-X, et al.Bidirectional Quantum Controlled Teleportation via Five-Qubit Cluster State[J].International Journal of Theoretical Physics, 2013, 52(6):1740-4
[7]PENG J-Y, BAI M-Q, MO Z-W.Bidirectional Quantum States Sharing[J].International Journal of Theoretical Physics, 2016, 55(5):2481-9
[8]HASSANPOUR S, HOUSHMAND M.Bidirectional teleportation of a pure EPR state by using GHZ states[J].Quantum Information Processing, 2016, 15(2):905-12
[9]GUANG YANG B-W L, MIN NIE, JIAO JIN.Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement[J].Chin Phys B, 2017, 26(4):40305-040305
[10]CHEN Y-X, DU J, LIU S-Y, et al.Cyclic quantum teleportation[J].Quantum Information Processing, 2017, 16(8):201-209
[11]PENG J-Y, BAI M-Q, MO Z-W.Deterministic Multi-hop Controlled Teleportation of Arbitrary Single-Qubit State[J].International Journal of Theoretical Physics, 2017, 56(10):3348-58
[12]HAI-TAO ZHAN X-T Y, PEI-YING XIONG, ZAI-CHEN ZHANG.Multi-hop teleportation based on W state and EPR pairs[J].Chin Phys B, 2016, 25(5):50305-050305
[13]OH S, LEE S, LEE H-W.Fidelity of quantum teleportation through noisy channels[J].Physical Review A, 2002, 66(2):022316-022322
[14]DONG L, WANG J-X, SHEN H-Z, et al.Deterministic transmission of an arbitrary single-photon polarization state through bit-flip error channel[J].Quantum Information Processing, 2014, 13(6):1413-24
[15]TERHAL B M.Quantum error correction for quantum memories[J].Reviews of Modern Physics, 2015, 87(2):307-46
[16]SHOR P W.Scheme for reducing decoherence in quantum computer memory[J].Physical Review A, 1995, 52(4):R2493-R6
[17]DONG L, WANG J-X, LI Q-Y, et al.Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem[J].Optics Letters, 2016, 41(5):1030-3
[18]XU G F, ZHANG J, TONG D M, et al.Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces[J].Physical Review Letters, 2012, 109(17):170501-170506
[19]LI C-K, NAKAHARA M, POON Y-T, et al.Recursive encoding and decoding of the noiseless subsystem and decoherence-free subspace[J].Physical Review A, 2011, 84(4):044301-044306
[20]XIU X-M, LI Q-Y, LIN Y-F, et al.Preparation of four-photon polarization-entangled decoherence-free states employing weak cross-Kerr nonlinearities[J].Physical Review A, 2016, 94(4):042321-042328
[21]PAN J-W, SIMON C, BRUKNER ?, et al.Entanglement purification for quantum communication[J].Nature, 2001, 410(6832):1067-70
[22]REN B-C, DU F-F, DENG F-G.Two-step hyperentanglement purification with the quantum-state-joining method[J].Physical Review A, 2014, 90(5):052309-052315
[23]LEE J-C, JEONG Y-C, KIM Y-S, et al.Experimental demonstration of decoherence suppression via quantum measurement reversal[J].Optics Express, 2011, 19(17):16309-16
[24]KIM Y-S, LEE J-C, KWON O, et al.Protecting entanglement from decoherence using weak measurement and quantum measurement reversal[J].Nature Physics, 2012, 8(2):117-20
[25]KIM Y-S, CHO Y-W, RA Y-S, et al.Reversing the weak quantum measurement for a photonic qubit[J].Optics Express, 2009, 17(14):11978-85
[26]KOROTKOV A N, JORDAN A N.Undoing a Weak Quantum Measurement of a Solid-State Qubit[J].Physical Review Letters, 2006, 97(16):166805-166811
[27]KATZ N, NEELEY M, ANSMANN M, et al.Reversal of the Weak Measurement of a Quantum State in a Superconducting Phase Qubit[J].Physical Review Letters, 2008, 101(20):200401-200406
[28]QIU L, TANG G, YANG X, et al.Enhancing teleportation fidelity by means of weak measurements or reversal [J]. Annals of Physics, 2014, 350: 137-45.[J].Annals of Physics, 2014, 350(5):137-145
[29]PENG J-Y, TANG L, YANG Z, et al.Cyclic teleportation in noisy channel with nondemolition parity analysis and weak measurement[J].Quantum Information Processing, 2022, 21(3):114-118
[30]MACCHIAVELLO C, PALMA G M.Entanglement-enhanced information transmission over a quantum channel with correlated noise[J].Physical Review A, 2002, 65(5):050301-050308
[31]KARPOV E, DAEMS D, CERF N J.Entanglement-enhanced classical capacity of quantum communication channels with memory in arbitrary dimensions[J].Physical Review A, 2006, 74(3):032320-032326
[32]武天雄, 李云霞, 蒙文.基于部分记忆信道的量子隐形传态保真度增强方法研究[J].激光与光电子学进展, 2021, 58(5):0527001-0527006
[33]JIANG S, ZHAO B, LIANG X.Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory[J].Chinese Physics B, 2021, 30(6):060303-060308
[34]ZHANG Z, SUN M.Enhanced deterministic joint remote state preparation under Pauli channels with memory[J].Physica Scripta, 2020, 95(5):055107-055116
[35]WANG M-J, XIA Y-J, YANG Y, et al.Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal[J].Chinese Physics B, 2020, 29(11):110307-110315
[36]PRESKILL J.California Institute of Technology [J]. Pasadena, CA, 1998, 91125.[J].California Institute of Technology [J], 1998, 125.(5):28-36
[37]JOZSA R.Fidelity for Mixed Quantum States[J].Journal of Modern Optics, 1994, 41(12):2315-23
[38]UHLMANN A.The “transition probability” in the state space of a ?-algebra[J].Reports on Mathematical Physics, 1976, 9(2):273-9
|