[1] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 2013, 525(3): 223-254.[2] Balasubramanian G, Chan I Y, Kolesov R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions[J]. Nature, 2008, 455(7213): 648-651.[3] Chen H. Nanoresonator Enhancement of Majorana-Fermion-Induced Slow Light in Superconducting Iron Chains[J]. Micromachines, 2021, 12(12): 1435.[4] Chen H J. Phonon pump enhanced fast and slow light in a spinning optomechanical system[J]. Results in Physics, 2021, 31: 105002.[5] Chen H J. Manipulation of fast and slow light propagation by photonic-molecule optomechanics[J]. Journal of Applied Physics, 2018, 124(15): 153102.[6] Childress L, Hanson R. Diamond NV centers for quantum computing and quantum networks[J]. MRS bulletin, 2013, 38(2): 134-138.[7] Rondin L, Tetienne J P, Hingant T, et al. Magnetometry with nitrogen-vacancy defects in diamond[J]. Reports on progress in physics, 2014, 77(5): 056503.[8] Teissier J, Barfuss A, Appel P, et al. Resolved sidebands in a strain-coupled hybrid spin-oscillator system[J]. arXiv preprint arXiv:1403.3405, 2014.[9] Ovartchaiyapong P, Lee K W, Myers B A, et al. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator[J]. Nature communications, 2014, 5(1): 1-6.[10] Sader J E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope[J]. Journal of applied physics, 1998, 84(1): 64-76.[11] Pang W, Zhao H, Kim E S, et al. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection[J]. Lab on a Chip, 2012, 12(1): 29-44.[12] Chen H J, Wu H W. Rabi splitting and optical Kerr nonlinearity of quantum dot mediated by Majorana fermions[J]. Scientific reports, 2018, 8(1): 1-10.[13] Zubairy M S. Quantum optics[M]. Cambridge University Press, 1997.[14] Bennett S D, Kolkowitz S, Unterreithmeier Q P, et al. Measuring mechanical motion with a single spin[J]. New Journal of Physics, 2012, 14(12): 125004.[15] Van Oort E, Glasbeek M. Electric-field-induced modulation of spin echoes of NV centers in diamond[J]. Chemical Physics Letters, 1990, 168(6): 529-532.[16] Dolde F, Fedder H, Doherty M W, et al. Electric-field sensing using single diamond spins[J]. Nature Physics, 2011, 7(6): 459-463.[17] Boyd R W. Nonlinear optics, Academic Press[J]. San Diego, 1992, 155.[18] Xue Y Z, Chen Z S, Ni H Q, et al. Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm[J]. Chinese physics B, 2017, 26(8): 084202.[19] Qin L G, Wang Q. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chinese Physics Letters, 2017, 34(1): 017303.[20] Li J J, Zhu K D. All-optical mass sensing with coupled mechanical resonator systems[J]. Physics Reports, 2013, 525(3): 223-254.[21] Chen H J. High-resolution biomolecules mass sensing based on a spinning optomechanical system with phonon pump[J]. Applied Physics Express, 2021, 14(8): 082005.[22] Jiang C, Cui Y, Zhu K D. Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems[J]. Optics express, 2014, 22(11): 13773-13783.[23] Chen H J, Zhu K D. Coherent optical responses and their application in biomolecule mass sensing based on a monolayer MoS 2 nanoresonator[J]. JOSA B, 2014, 31(7): 1684-1690.[24] He Y. Sensitivity of optical mass sensor enhanced by optomechanical coupling[J]. Applied Physics Letters, 2015, 106(12): 121905.[25] Chen H J, Chen C Z, Li Y, et al. Coherent optical propagation and ultrahigh resolution mass sensor based on photonic molecules optomechanics[J]. Optics Communications, 2017, 382: 73-79. |