量子电子学报 ›› 2024, Vol. 41 ›› Issue (2): 185-193.doi: 10.3969/j.issn.1007-5461.2024.02.001
• 综述 • 下一篇
吴广坤# , 丁华峰# , 陈建军 *
收稿日期:
2023-09-01
修回日期:
2023-11-07
出版日期:
2024-03-28
发布日期:
2024-03-28
通讯作者:
E-mail: jjchern@bnu.edu.cn
E-mail:E-mail: jjchern@bnu.edu.cn
作者简介:
E-mail: wugk@mail.bnu.edu.cn; dinghf@mail.bnu.edu.cn
基金资助:
Tailoring single-photon emission with metallic nano-structures
Received:
2023-09-01
Revised:
2023-11-07
Published:
2024-03-28
Online:
2024-03-28
摘要: 固态单光子发射体结合了原子优异的光学性质 (如高可靠性、高效率等) 和固态系统的便利性与可扩展性, 在可扩展光量子信息技术中扮演着重要角色。然而, 真空中固态单光子发射体所发出的单光子具有自发辐射速率 低、 各向同性发射、 发射光的偏振状态随机等不足, 这极大地限制了其应用。金属微纳结构支持的表面等离激元具 有巨大的场增强和亚波长的场束缚效应, 因此国内外研究者设计了各种各样的金属微纳结构来操控单光子发射体的 辐射。本研究综述了金属微纳结构在单光子发射体自发辐射增强、 准直辐射、 辐射偏振操控等方面的研究进展, 重 点比较了性能指标并分析了操控机制。最后, 对金属微纳结构操控单光子发射体辐射的挑战和发展进行了展望。
中图分类号:
吴广坤#, 丁华峰#, 陈建军 . 金属微纳结构操控单光子发射体辐射[J]. 量子电子学报, 2024, 41(2): 185-193.
Tailoring single-photon emission with metallic nano-structures. Tailoring single-photon emission with metallic nano-structures[J]. Chinese Journal of Quantum Electronics, 2024, 41(2): 185-193.
[1]Reimer M E, Cher C.The quest for a perfect single-photon source[J].Nature Photonics, 2019, 13(11):734-736 [2]Oxborrow M, Sinclair A G.Single-photon sources[J].Contemporary Physics, 2005, 46(3):173-206 [3]Northup T E, Blatt R.Quantum information transfer using photons[J].Nature Photonics, 2014, 8(5):356-363 [4]Lodahl P, Mahmoodian S, Stobbe S.Interfacing single photons and single quantum dots with photonic nanostructures[J].Reviews of Modern Physics, 2015, 87(2):347-400 [5]Aharonovich I, Englund D, Toth M.Solid-state single-photon emitters[J].Nature Photonics, 2016, 10(10):631-641 [6]Senellart P, Solomon G, White A.High-performance semiconductor quantum-dot single-photon sources[J].Nature Nanotechnology, 2017, 12(11):1026-1039 [7]Qiang X, Zhou X, Wang J, et al.Large-scale silicon quantum photonics implementing arbitrary two-qubit processing[J].Nature Photonics, 2018, 12(9):534-539 [8]Luo Y, Ahmadi E D, Shayan K, et al.Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities[J].Nature Communications, 2017, 8(1):1413-1413 [9]Kan Y, Bozhevolnyi S I.Advances in Metaphotonics Empowered Single Photon Emission[J].Advanced Optical Materials, 2023, 11(10):2202759-2202759 [10]Morozov S, Gaio M, Maier S A, et al.Metal-Dielectric Parabolic Antenna for Directing Single Photons[J].Nano Letters, 2018, 18(5):3060-3065 [11]Curto A, Volpe G, Taminiau T, et al.Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna[J].Science, 2010, 329(5994):930-933 [12]Andersen S K H, Bogdanov S, Makarova O, et al.Hybrid Plasmonic Bullseye Antennas for Efficient Photon Collection[J].ACS Photonics, 2018, 5(3):692-698 [13]Kan Y, Ding F, Zhao C, et al.Directional off-Normal Photon Streaming from Hybrid Plasmon-Emitter Coupled Metasurfaces[J].ACS Photonics, 2020, 7(5):1111-1116 [14]Andersen S K H, Kumar S, Bozhevolnyi S I.Ultrabright Linearly Polarized Photon Generation from a Nitrogen Vacancy Center in a Nanocube Dimer Antenna[J].Nano Letters, 2017, 17(6):3889-3895 [15]Kan Y, Andersen S K H, Ding F, et al.Metasurface-Enabled Generation of Circularly Polarized Single Photons[J].Advanced Materials, 2020, 32(16):1907832-1907832 [16]Zhang G, Gu Y, Gong Q, et al.Symmetry-tailored patterns and polarizations of single-photon emission[J].Nanophotonics, 2020, 9(11):3557-3565 [17]Xue Z, Jia S, Li X, et al.Scalar‐Superposition Metasurfaces with Robust Placement of Quantum Emitters for Tailoring Single‐Photon Emission Polarization[J].Laser & Photonics Reviews, 2022, 16(9):2200179-2200179 [18]Jia S, Li Y, Xue Z, et al.Multichannel Single-Photon Emissions with on-Demand Momentums by Using Anisotropic Quantum Metasurfaces[J].Advanced Materials, 2023, 35(26):2212244-2212244 [19]Bao Y, Lin Q, Su R, et al.On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface[J].Science Advances, 2020, 6(31):e-a [20]Akselrod G M, Argyropoulos C, Hoang T B, et al.Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas[J].Nature Photonics, 2014, 8(11):835-840 [21]Werschler F, Lindner B, Hinz C, et al.Efficient Emission Enhancement of Single CdSeCdSPMMA Quantum Dots through Controlled Near-Field Coupling to Plasmonic Bullseye Resonators[J].Nano Letters, 2018, 18(9):5396-5400 [22]Shafi K M, Yalla R, Nayak K P.Bright and Polarized Fiber In-Line Single-Photon Source Based on Plasmon-Enhanced Emission into Nanofiber Guided Modes[J].Physical Review Applied, 2023, 19(3):034008-034008 [23]Pelton M.Modified spontaneous emission in nanophotonic structures[J].Nature Photonics, 2015, 9(7):427-435 [24]Choi H, Zhu D, Yoon Y, et al.Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters[J].Physical Review Letters, 2019, 122(18):183602-183602 [25]Saxena A, Chen Y, Ryou A, et al.Improving Indistinguishability of Single Photons from Colloidal Quantum Dots Using Nanocavities[J].ACS Photonics, 2019, 6(12):3166-3173 [26]Bermudez-Urena E, Gonzalez-Ballestero C, Geiselmann M, et al.Coupling of individual quantum emitters to channel plasmons [J]. Nature Communications, 2015, 6: 7883. [27]Zhang G, Jia S, Gu Y, et al.Brightening and Guiding Single‐Photon Emission by Plasmonic Waveguide–Slit Structures on a Metallic Substrate[J].Laser & Photonics Reviews, 2019, 13(10):1900025- [28]Bozhevolnyi S I, Khurgin J B.Fundamental limitations in spontaneous emission rate of single-photon sources[J].Optica, 2016, 3(12):1418-1421 [29]Chen J, Gan F, Wang Y, et al.Plasmonic Sensing and Modulation Based on Fano Resonances[J].Advanced Optical Materials, 2018, 6(9):1701152- [30]Gramotnev D K, Bozhevolnyi S I.Plasmonics beyond the diffraction limit[J].Nature Photonics, 2010, 4(2):83-91 [31]Zhang Y, Wang H, Liao H, et al.Unidirectional launching of surface plasmons at the subwavelength scale[J].Applied Physics Letters, 2014, 105(23):231605- [32]Xia S, Aoki T, Gao K, et al.Enhanced Single-Photon Emission from GaN Quantum Dots in Bullseye Structures[J].ACS Photonics, 2021, 8(6):1656-1661 [33]Liu J, Su R, Wei Y, et al.A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability[J].Nature Nanotechnology, 2019, 14(6):586-593 [34]Wang H, He Y-M, Chung T H, et al.Towards optimal single-photon sources from polarized microcavities[J].Nature Photonics, 2019, 13(11):770-775 [35]Jiang Q, Roy P, Claude J-B, et al.Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot[J].Nano Letters, 2021, 21(16):7030-7036 [36]Lian H, Gu Y, Ren J, et al.Efficient Single Photon Emission and Collection Based on Excitation of Gap Surface Plasmons[J].Physical Review Letters, 2015, 114(19):192301- [37]Abudayyeh H, Mildner A, Liran D, et al.Overcoming the Rate-Directionality Trade-off: A Room-Temperature Ultrabright Quantum Light Source[J].ACS Nano, 2021, 15(11):17384-17391 [38]Hoang T B, Akselrod G M, Mikkelsen M H.Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities[J].Nano Letters, 2016, 16(1):270-275 [39]Bogdanov S I, Shalaginov M Y, Lagutchev A S, et al.Ultrabright Room-Temperature Sub-Nanosecond Emission from Single Nitrogen-Vacancy Centers Coupled to Nanopatch Antennas[J].Nano Letters, 2018, 18(8):4837-4844 [40]Kosako T, Kadoya Y, Hofmann H F.Directional control of light by a nano-optical Yagi-Uda antenna[J].Nature Photonics, 2010, 4(5):312-315 [41]Livneh N, Harats M G, Istrati D, et al.Highly Directional Room-Temperature Single Photon Device[J].Nano Letters, 2016, 16(4):2527-2532 [42]Davanco M, Rakher M T, Schuh D, et al.A circular dielectric grating for vertical extraction of single quantum dot emission[J].Applied Physics Letters, 2011, 99(4):041102- [43]Li L, Chen E H, Zheng J, et al.Efficient Photon Collection from a Nitrogen Vacancy Center in a Circular Bullseye Grating[J].Nano Letters, 2015, 15(3):1493-1497 [44]Belacel C, Habert B, Bigourdan F, et al.Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas[J].Nano Letters, 2013, 13(4):1516-1521 [45]Huang T-Y, Grote R R, Mann S A, et al.A monolithic immersion metalens for imaging solid-state quantum emitters [J]. Nature Communications, 2019, 10: 2392. [46]Xie Y-Y, Ni P-N, Wang Q-H, et al.Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions[J].Nature Nanotechnology, 2020, 15(2):125-130 [47]Kan Y, Bozhevolnyi S I.Molding Photon Emission with Hybrid Plasmon-Emitter Coupled Metasurfaces[J].Advanced Optical Materials, 2022, 10(12):2102697- [48]Wang Y, Li S, Yan J-Y, et al.Bidirectional to unidirectional emission of fluorescence controlled by optical traveling wave antennas[J].Nanophotonics, 2019, 8(7):1271-1278 [49]Puchtler T J, Wang T, Ren C X, et al.Ultrafast,Polarized,Single-Photon Emission from m-Plane InGaN Quantum Dots on GaN Nanowires[J].Nano Letters, 2016, 16(12):7779-7785 [50]Komisar D, Kumar S, Kan Y, et al.Generation of Radially Polarized Single Photons with Plasmonic Bullseye Antennas[J].ACS Photonics, 2021, 8(8):2190-2196 [51]Hu H, Chen W, Han X, et al.Plasmonic nanobar-on-mirror antenna with giant local chirality: a new platform for ultrafast chiral single-photon emission[J].Nanoscale, 2022, 14(6):2287-2295 |
[1] | 王曦 , 杨双良 , 冷斯云 , 黄文涛 , 周原 . 机械介导的声子-光子非互易量子界面[J]. 量子电子学报, 2024, 41(2): 310-317. |
[2] | 程登翔 , 杨振 , 谢佳欣 , 柏明强 , 莫智文 , . N 个接收方的同时密集编码协议[J]. 量子电子学报, 2024, 41(2): 340-348. |
[3] | 朱鹏杰 , 陈华俊 . 基于复合纳米振子系统的光学质量传感[J]. 量子电子学报, 2024, 41(2): 349-356. |
[4] | 格日乐 , 萨楚尔夫 , 格根图雅 , 宫艳丽 . 玻色-爱因斯坦凝聚与光场作用的保真度[J]. 量子电子学报, 2024, 41(1): 95-102. |
[5] | 李想 , 张可佳 , . 一种基于GHZ态的半量子双方身份认证协议[J]. 量子电子学报, 2024, 41(1): 135-142. |
[6] | 杨冬晗 , 李志强, 吴希 , 潘文杰 , 杨辉. 基于最小权和模板匹配的Oracle线路优化[J]. 量子电子学报, 2024, 41(1): 151-160. |
[7] | 陈 斌 #, 陈天豪 #, 张 融 . 量子行走到经典行走的连续调控[J]. 量子电子学报, 2023, 40(6): 917-923. |
[8] | 曾妙娜, 杨 名, . 基于量子行走的确定性远程光子态交换[J]. 量子电子学报, 2023, 40(6): 924-932. |
[9] | 朱孟正 , 苏梦远 , 公丕锋 , 张金锋 . 空间纠缠协助下对低纠缠 GHZ 态的确定性纠缠纯化[J]. 量子电子学报, 2023, 40(6): 943-951. |
[10] | 努尔比耶·艾则孜, 闫好奎, 向梅, 布玛丽亚·阿布力米提, 安桓 . 外电场下二溴一氯甲烷分子的光谱特征和解离特性[J]. 量子电子学报, 2023, 40(5): 644-653. |
[11] | 张宝林, 马子晓, 黄垚, 管桦, 高克林 . 锁定参数与光钟稳定度关系的研究[J]. 量子电子学报, 2023, 40(5): 694-699. |
[12] | 胡倩倩 , 冯宝 , 闫龙川 , 赵晓红 , 陈智雨 , 李文婷 , 李威 . 基于光源检测的相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(5): 712-718. |
[13] | 张波 , 瞿迪庆 , 罗俊 , 杜响剑 , 方余强 , 蒋连军 , 高松 , 于林 , 孙帆 , 唐世彪 . 一种用于量子密钥分发系统的脉冲光致盲攻击防御方案[J]. 量子电子学报, 2023, 40(5): 719-725. |
[14] | 黄灌 , 娄小平. 基于四粒子GHZ态的半量子私有比较协议[J]. 量子电子学报, 2023, 40(5): 726-737. |
[15] | 季雯 , 叶宾 , . HHL 量子算法的普适量子线路设计[J]. 量子电子学报, 2023, 40(5): 747-758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||