| [1]Bennett C H, Brassard G.Quantum cryptography: Public key distribution and coin tossing[J].Theoretical Computer Science, 2014, 560:7-11
[2]Liu Y, Zhang W J, Jiang C, et al.Experimental twin-field quantum key distribution over 1000 km fiber distance[J].Physical Review Letters, 2023, 130(21):210801-
[3]Du Y, Zhu X, Hua X, et al.Silicon-based decoder for polarization-encoding quantum key distribution[J].Chip, 2023, 2(1):100039-
[4]Liao S K, Cai W Q, Liu W Y, et al.Satellite-to-ground quantum key distribution[J].Nature, 2017, 549(7670):43-47
[5]Li Y, Cai W Q, Ren J G, et al.Microsatellite-based real-time quantum key distribution : 1-8.[J].Nature, 2025, 640:47-54
[6]Zeng P, Zhou H, Wu W, et al.Mode-pairing quantum key distribution[J].Nature Communications, 2022, 13(1):3903-
[7]Xie Y M, Lu Y S, Weng C X, et al.Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference[J].PRX Quantum, 2022, 3(2):020315-
[8]Pirandola S, Laurenza R, Ottaviani C, et al.Fundamental limits of repeaterless quantum communications[J].Nature Communications, 2017, 8(1):15043-
[9]Lucamarini M, Yuan Z L, Dynes J F, et al.Overcoming the rate–distance limit of quantum key distribution without quantum repeaters[J].Nature, 2018, 557(7705):400-403
[10]Zhu H T, Huang Y, Liu H, et al.Experimental mode-pairing measurement-device-independent quantum key distribution without global phase locking[J].Physical Review Letters, 2023, 130(3):030801-
[11]Zhou L, Lin J, Xie Y M, et al.Experimental quantum communication overcomes the rate-loss limit without global phase tracking[J].Physical Review Letters, 2023, 130(25):250801-
[12]Zhu H T, Huang Y, Pan W X, et al.Field test of mode-pairing quantum key distribution[J].Optica, 2024, 11(6):883-888
[13]Li Z, Dou T, Cheng M, et al.Field experimental mode-pairing quantum key distribution with intensity fluctuations[J].Optics Letters, 2024, 49(23):6609-6612
[14]Wang X B.Decoy-state quantum key distribution with large random errors of light intensity[J].Physical Review A—Atomic, Molecular, and Optical Physics, 2007, 75(5):052301-
[15]Gisin N, Fasel S, Kraus B, et al.Trojan-horse attacks on quantum-key-distribution systems[J].Physical Review A—Atomic, Molecular, and Optical Physics, 2006, 73(2):022320-
[16]Zhao Y, Qi B, Lo H K.Quantum key distribution with an unknown and untrusted source[J].Physical Review A—Atomic, Molecular, and Optical Physics, 2008, 77(5):052327-
[17]Peng X, Xu B, Guo H.Passive-scheme analysis for solving the untrusted source problem in quantum key distribution[J].Physical Review A—Atomic, Molecular, and Optical Physics, 2010, 81(4):042320-
[18]Peng X, Jiang H, Xu B, et al.Experimental quantum-key distribution with an untrusted source[J].Optics Letters, 2008, 33(18):2077-2079
[19]Hu Q.Feng B[J].Yan L., et al. Phase-matching quantum key distribution protocol based on light source detection. Chinese Journal of Quantum Electronics, 2023, 40(5):712-718
[20]胡倩倩, 冯宝, 闫龙川, 等.基于光源检测的相位匹配量子密钥分发协议[J].Chinese Journal of Quantum Electronics, 2023, 40(5):712-718
[21]Li Z, Dou T, Xie Y, et al.Mode pairing quantum key distribution with light source monitoring[J].New Journal of Physics, 2024, 26(9):093011-
[22]Tomamichel M, Lim C C W, Gisin N, et al.Tight finite-key analysis for quantum cryptography[J].Nature Communications, 2012, 3(1):634-
[23]Curty M, Xu F, Cui W, et al.Finite-key analysis for measurement-device-independent quantum key distribution[J].Nature Communications, 2014, 5(1):3732-
[24]Jiang C, Yu Z W, Wang X B.Measurement-device-independent quantum key distribution with source state errors in photon number space[J].Physical Review A, 2016, 94(6):062323-
[25]Kennedy J.Encyclopedia of machine learning , 2011: 760-766.[J].Particle swarm optimization, 2011, :760-766
|