J4 ›› 2009, Vol. 26 ›› Issue (4): 398-404.

• 图像与信息处理 • 上一篇    下一篇

抗噪声的小波谱压缩特征提取算法在语音识别中的应用

付丽辉   

  1. 江苏省淮阴工学院 电子信息工程系,江苏 淮安 223001
  • 收稿日期:2008-09-03 修回日期:2009-01-12 出版日期:2009-07-28 发布日期:2009-06-29
  • 通讯作者: 付丽辉, 女, 1975年出生,讲师, 硕士研究生 E-mail:flh3650326@163.com

Application of a Speech Recognition about robust feature which combines wavelet with spectral compression scheme

FU Li-Hui   

  1. Department of Electrical Engineering, Huaiyin Institute of Technology, Jiangsu Huaian 223001,China
  • Received:2008-09-03 Revised:2009-01-12 Published:2009-07-28 Online:2009-06-29

摘要:

针对语音识别实际应用过程中的噪声问题,给出了一种新的抗噪声的特征提取算法,即先利用小波变换将语音信号进行小波子带分解,再根据人耳的听觉掩蔽效应,由谱压缩的技术,将小波变换后的子带语音信号进行压缩,从而提取其对应的语音特征。通过MATLAB软件建立实验平台,仿真实验结果表明该语音特征可以在噪声环境下得到较高的识别率。新的特征参数即充分利用了小波的抗噪声特性又有效地降低了语音识别中的训练环境和识别环境间的失配,具有抗噪声的特点。

关键词: 语音识别, 抗噪声, 人工神经网络, 谱压缩

Abstract:

Aimed at the problem of noise in application of speech recognition, a new method of robust feature extraction is presented. The speech was decomposed by wavelet transformation, and it was compressed by spectral compression scheme related to human hearing mask theory. Experimental results of MATLAB simulation showed that high recognition rate could be obtained by using of the new feature in noise environment. It can make the best of robust characteristic of wavelet and reduce the difference between training and recognition environment, so it is a robust feature.

Key words: speech recognition, robust, artificial neural networks, spectral compression

中图分类号: