J4 ›› 2010, Vol. 27 ›› Issue (5): 547-553.

• 量子光学 • 上一篇    下一篇

基于量子测量的紧框架构造方法研究

颜伟, 倪林   

  1. 中国科学技术大学电子工程与信息科学系,安徽 合肥 230027
  • 收稿日期:2009-12-04 修回日期:2010-01-12 出版日期:2010-09-28 发布日期:2010-08-31
  • 通讯作者: 倪林(1967-),男,安徽舒城,副教授,博士,主要研究方向:小波、图像检索、视觉信息处理. E-mail:nilin@ustc.edu.cn
  • 作者简介:颜伟(1983-),男,湖南邵阳,研究生,研究方向:研究量子测量原理启发的新型框架 Email:yanwei@mail.ustc.edu.cn
  • 基金资助:

    国家自然科学基金(60672055)

Study on construction method of tight frame based on quantum measurement

YAN Wei, NI Lin   

  1. Department of Electronic Engineering & Information Science,University of Science and technology of China,Hefei 230027,China
  • Received:2009-12-04 Revised:2010-01-12 Published:2010-09-28 Online:2010-08-31

摘要:

根据经典领域中的有限维紧框架研究量子领域中紧框架构造方法。由于紧框架与秩一广义量子测量有一一对应关系,在量子领域中设计了两种基于量子广义测量的紧框架构造方法。研究表明,这两种最优量子紧框架能分别解决两种基本的量子态区分策略:最小差错区分和最优无错区分。最小差错区分给定的一组向量,应用最小二乘准则,用广义量子测量方法构造了基于LSM的最优量子紧框架。这种最优量子紧框架分为两种情况:一种是给定框架界的最小二乘框架(CLSF),另一种是选择最优框架界的的最小二乘框架(ULSF),最优框架界能最小化最小二乘误差。还用量子广义测量方法构造了基于最优无错区分的量子紧框架。最后举例对比了以上最优紧框架构造方法,ULSF为最优有限维紧框架。

关键词: 光通信, 紧框架, 最小二乘, 量子测量

Abstract:

The construction methods of tight frame in quantum field is researched according to the finite-dimensional tight frame in classic field.As one-to-one correspondence between tight frames and rank-one generalized quantum measurement is proved,two construction methods of tight frame in quantum field based on generalized quantum measurement are designed.Studies show that two optimal quantum tight frame can separately solve two basic strategies of state discrimination which are minimum error discrimination and optimal unambiguous discrimination. The minimum error discrimination of a given set of vectors using generalized quantum measurement method with the least–squares criteria is precisely quantum tight frame based on least squares measurement,which can be divided into two situations:constrained least-squares frame (CLSF) that has specified scale and unconstrained least-squares frame (ULSF) whose scale is chosen to minimize the least-squares error.Quantum tight frame based on optimal unambiguous discrimination is also given using quantum generalized measurement method.Finally, an example is given to compare these optimal construction methods of tight frame and illustrate that ULSF is best.

Key words: optical communication, tight frame, least-squares, quantum measurement