量子电子学报 ›› 2022, Vol. 39 ›› Issue (4): 485-493.doi: 10.3969/j.issn.1007-5461.2022.04.002

• 光谱 • 上一篇    下一篇

混合水溶液中金属元素的偏最小二乘法激光诱导击穿光谱

徐鹏1,2, 贾韧1,2, 姚关心1,2, 秦正波1,2, 郑贤锋1,2, 杨新艳1,2, 崔执凤1,2*   

  1. ( 1 安徽师范大学物理与电子信息学院, 安徽芜湖241002; 2 光电材料科学与技术安徽省重点实验室, 安徽芜湖241002 )
  • 收稿日期:2021-01-19 修回日期:2021-03-10 出版日期:2022-07-28 发布日期:2022-07-28
  • 通讯作者: E-mail: zfcui@ahnu.edu.cn E-mail:E-mail: zfcui@ahnu.edu.cn
  • 作者简介:徐鹏( 1993 - ), 安徽安庆人, 研究生, 主要从事激光诱导击穿光谱理论与实验方面的研究。E-mail: 1536270967@qq.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, 11074003, 61805002, 61475001), Anhui Provincial Key Research and Development Program (安徽省重点研发计划, 1804a0802193)

Laser-induced breakdown spectroscopy of metal-element in mixed aqueous solutions by partial least-squares regression

XU Peng1,2, JIA Ren1,2, YAO Guanxin1,2, QIN Zhengbo1,2, ZHENG Xianfeng1,2, YANG Xinyan1,2, CUI Zhifeng1,2*   

  1. ( 1 College of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China; 2 Key Laboratory of Photoelectric Materials Science and Technology of Anhui Province, Wuhu 241002, China )
  • Received:2021-01-19 Revised:2021-03-10 Published:2022-07-28 Online:2022-07-28
  • Supported by:
    National Natural Science Foundation of China;Anhui Provincial Key Research and Development Program;Anhui University Natural Science Research Project;Innovation Funds of Anhui Normal University

摘要: 为提高激光诱导击穿光谱技术(LIBS) 对水中重金属元素含量的检测精确度, 将LIBS 技术分别与单变 量定标(SVCC) 和偏最小二乘法(PLS) 分析方法相结合, 对Cr、Mn、Ca 混合水溶液中的金属元素进行了定量 分析。利用PLS-LIBS 技术研究了样品中共存元素对分析元素的影响, 研究结果表明分析元素的检测精确度受 共存元素的影响较大, 将共存元素与分析元素的分析线强度同时作为PLS 模型的输入变量, 得到的分析元素 浓度总预测相对误差明显减小。利用SVCC-LIBS 方法检测Cr、Mn、Ca 元素的浓度总预测相对误差分别为 14.3%、8.46%、6.35%, 而利用PLS-LIBS 方法各相对误差分别改善至2.30%、0.74%、0.03%, 其中Mn 元素的 浓度预测相关曲线线性度R2 由SVCC-LIBS 方法的0.985 改善至0.999, 表明PLS-LIBS 技术能有效提高混合水 溶液中微量金属元素的检测精确度。

关键词: 光谱学, 激光诱导击穿光谱, 混合水溶液, 金属元素, 偏最小二乘法, 共存元素, 检测精确度

Abstract: To improve the detection accuracy of laser-induced breakdown spectroscopy (LIBS) for heavy metal elements in water, LIBS technique is combined with single variable calibration curve (SVCCLIBS) method and partial least squares regression (PLS-LIBS) method respectively to quantitative analyze Cr, Mn, and Ca in mixed aqueous solutions. The influence of coexisting elements on the detection accuracy of analytical elements is studied by PLS-LIBS. The results show that the detection accuracy of analytical elements is greatly influenced by coexisting elements, and the total relative errors of the prediction of the analyzed element concentrations are significantly reduced when the analytical line intensities of analytical elements and coexisting elements are taken as the input variables of PLS model. The total relative errors of concentration prediction of Cr, Mn, and Ca elements obtained by SVCCLIBS method are 14.3%, 8.46%, and 6.35% respectively, while the relative errors of PLS-LIBS method are improved to 2.30%, 0.74%, and 0.03%, respectively. The linearity R2 of the concentration prediction correlation curve for Mn element is improved from 0.985 for SVCC-LIBS method to 0.999 for PLSLIBS method. The research results indicate that the PLS-LIBS method can effectively improve the detection accuracy of trace metal elements in mixed aqueous solutions.

Key words: spectroscopy, laser-induced breakdown spectroscopy, mixed aqueous solution, metal element; partial least-squares regression, coexisting element, detection accuracy

中图分类号: