量子电子学报 ›› 2022, Vol. 39 ›› Issue (4): 511-518.doi: 10.3969/j.issn.1007-5461.2022.04.005

• 光谱 • 上一篇    下一篇

基于支持向量回归的光声光谱信号 温度和湿度校正方法

马凤翔1, 赵跃1, 崔方晓2∗, 李大成2   

  1. ( 1 国网安徽省电力有限公司电力科学研究院, 安徽合肥230022; 2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征技术重点实验室, 安徽合肥230031 )
  • 收稿日期:2020-05-28 修回日期:2020-06-09 出版日期:2022-07-28 发布日期:2022-07-28
  • 通讯作者: E-mail: fxcui@aiofm.ac.cn E-mail:E-mail: fxcui@aiofm.ac.cn
  • 作者简介:马凤翔( 1987 - ), 安徽蚌埠人, 硕士, 高级工程师, 主要从事六氟化硫气体检测运维技术方面的研究。 E-mail: njumfx@foxmail.com
  • 基金资助:
    Supported by Technology Project of State Grid Corporation (国家电网有限公司科技项目, 521205190014)

Temperature and humidity correction method for photoacoustic spectroscopy signal based on support vector regression

MA Fengxiang1, ZHAO Yue1, CUI Fangxiao2∗, LI Dacheng2   

  1. ( 1 State Grid Anhui Electric Power Research Institute, Hefei 230022, China; 2 Key Laboratory of General Optical Calibration and Characterization Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China )
  • Received:2020-05-28 Revised:2020-06-09 Published:2022-07-28 Online:2022-07-28

摘要: 非共振光声光谱技术可用于在线检测变压器油中溶解气体, 保障变压器安全运行。然而在室外环境下, 背景信号易受到环境温度、湿度的影响, 必须对这些因素进行校正, 以提高仪器在线检测的稳定性和可靠性。 背景信号的温度和湿度校正因子一般通过实验室测量得到, 但测量过程中由于外部环境干扰, 采集样本会出现 较大波动, 因此需要具有一定鲁棒性的回归算法计算校正因子。研究了基于支持向量回归的背景信号的温度和 湿度校正方法, 选择乙炔作为研究对象, 在实验室内利用湿度发生器产生不同浓度水汽, 同时利用温度传感器测 量光声池温度, 回归乙炔背景信号校正因子, 并采用体积分数分别为0、5 × 10−6 和2 × 10−5 的乙炔和空气混合 气体进行了验证。研究结果表明, 对于体积分数为5 × 10−6 和2 × 10−5 的乙炔混合气体, 所提方法和最小二乘法 校正结果趋势相同, 但最小二乘法校正信号存在趋势性偏离, 而所提方法对背景信号校正具有更好的重复性和 稳定性, 优于最小二乘法。

关键词: 光谱学, 光声光谱, 支持向量回归, 温度湿度校正, 溶解气体分析

Abstract: Photoacoustic spectroscopy (PAS) technology is very useful in online detection of dissolved gases in transformer oil to ensure the safety of transformers. However, in the outdoor environment, the measured background signal of the instrument is easily affected by the ambient temperature and humidity, and the correction of these factors must be considered to improve the stability and reliability of the online measurement of PAS instrument. The background correction factor is generally obtained by regression of different humidity and temperature measured in the laboratory, but the environment often changes during measurement procedure, so a robust regression algorithm is needed to obtain accurate correction factor. The temperature and humidity correction method based on the support vector regression is studied in this work. Acetylene is selected as the research object. Humidity air with different concentrations is generated by using humidity generator in laboratory, and the temperature of the PAS cell is measured by temperature sensor, and then the background signal correction factor of acetylene is regressed from the measured data. Furthermore, the method is verified by acetylene air mixture with acetylene volume fraction of 0, 5×10−6 and 2×10−5. The results show that the proposed method and the least squares regression method have the same trend for acetylene mixture with volume fraction of 5×10−6 and 2×10−5. Whereas the least squares regression has tendency in residuals, and the proposed method has better repeatability and stability for temperature and humidity correction than the least square method.

Key words: spectroscopy, photoacoustic spectroscopy, support vector regression, temperature and humidity correction, dissolved gas analysis

中图分类号: