量子电子学报 ›› 2022, Vol. 39 ›› Issue (4): 494-501.doi: 10.3969/j.issn.1007-5461.2022.04.003

• 光谱 • 上一篇    下一篇

激光诱导击穿光谱技术实时检测蔷薇属植物

于玮1, 周卓彦1, 孙仲谋1, 张兴龙1, 刘玉柱1;2;3*   

  1. ( 1 南京信息工程大学, 江苏省大气海洋光电探测重点实验室, 江苏南京210044; 2 江苏省大气环境与装备技术协同创新中心, 江苏南京210044; 3 南京信息工程大学, 江苏省气象光子学与光电探测国际合作联合实验室, 江苏南京210044 )
  • 收稿日期:2021-04-26 修回日期:2021-06-11 出版日期:2022-07-28 发布日期:2022-07-28
  • 通讯作者: E-mail: yuzhu.liu@gmail.com E-mail:E-mail: yuzhu.liu@gmail.com
  • 作者简介:于玮( 1998 - ), 女, 江苏扬州人, 研究生, 主要从事激光光谱方面的研究。E-mail: 20201249523@nuist.edu.cn
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金, u1810129, 11904252), State Key Laboratory of Applied Optics (应用光学国家重点实验室开放基金, SKLAO-201902), Transformation of Scientific and Technological Achievements Fund of Shanxi Province (山 西科技厅青年科技研究基金, 201904D131025), Science and Technology Innovation Program for Colleges and Universities in Shanxi Province (山西省高 等学校科技创新计划, 2019L0634)

Real-time detection of the genus Rosa L. using LIBS technology

YU Wei1, ZHOU Zhuoyan1, SUN Zhongmou1, ZHANG Xinglong1, LIU Yuzhu1;2;3*   

  1. ( 1 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Jiangsu Collaborative Innovation Center on Atmosphere Environment and Equipment Technology, Nanjing 210044, China; 3 Jiangsu International Joint Laboratory on Meterological Photonics and Optoelectronic Detection, Nanjing University of Information Science & Technology, Nanjing 210044, China )
  • Received:2021-04-26 Revised:2021-06-11 Published:2022-07-28 Online:2022-07-28

摘要: 玫瑰、蔷薇和月季三种花同属于蔷薇属植物, 这三种花外貌相似, 极易混淆。蔷薇属植物具有重要的观 赏价值、药用价值等, 因此快速鉴别蔷薇属植物具有重要意义。利用激光诱导击穿光谱(LIBS) 技术对三种花进 行原位在线检测, 可以识别三种花中的主要元素。通过植物中所含元素的差异以及同一元素对应谱线的相对强 度的差异, 可以辨别玫瑰、蔷薇和月季。此外, 在蔷薇属植物光谱中还可以探测到CN 自由基, 利用LIFBASE 软 件模拟光谱中的CN, 计算CN 的振动温度和转动温度, 得到的参数可以视为实验参数。在对比分析三种不同花 的激光诱导击穿光谱后, 选择强度差异显著的特征谱线作为变量, 结合广义回归神经网络(GRNN) 对花属进行 预测, 正确率可达93.3%。

关键词: 光谱学, 检测蔷薇属植物, 激光诱导击穿光谱, 广义回归神经网络

Abstract: Rosa rugosa Thunb., Rosa sp. and Rosa chinensis Jacq. all belong to the genus Rosa L. The three kinds of flowers are similar in appearance and easily confused. The genus Rosa L. has important ornamental value and medicinal value, so it is of great significance to quickly identify the genus Rosa L. Laser induced breakdown spectroscopy (LIBS) is used for in situ detection of the main elements in the three flowers in this work. In addition, CN can also be recognized in the spectrum of the genus Rosa L, so the CN in the spectrum is simulated by using LIFBASE, and the vibration temperature and rotation temperature of CN are calculated. Then the parameters obtained can be regarded as experimental parameters. By comparing and analyzing the laser induced breakdown spectra of the three different kinds of flowers, the characteristic spectral lines with significant difference in intensity are selected as variables to predict flower genus, and combined with the general regression neural network (GRNN), the prediction accuracy could reach 93.3%.

Key words: spectroscopy, detection of the genus Rosa L., laserinduced breakdown spectroscopy, general regression neural network

中图分类号: