量子电子学报 ›› 2022, Vol. 39 ›› Issue (4): 531-540.doi: 10.3969/j.issn.1007-5461.2022.04.007

• 光谱 • 上一篇    下一篇

苹果酸度可见-近红外无损测定模型设计与优化

张云琪1;2, 崔超远1*, 陈永1;2, 鲁翠萍3   

  1. ( 1 中国科学院合肥物质科学研究院智能机械研究所, 安徽合肥230031; 2 中国科学技术大学, 安徽合肥230026; 3 合肥学院先进制造工程学院, 安徽合肥230061 )
  • 收稿日期:2020-12-07 修回日期:2021-01-12 出版日期:2022-07-28 发布日期:2022-07-28
  • 通讯作者: E-mail: cycui@iim.ac.cn E-mail:E-mail: cycui@iim.ac.cn
  • 作者简介:张云琪( 1995 - ), 江苏无锡人, 研究生, 主要从事光谱分析、计算机应用技术方面的研究。 E-mail: yqizhang@mail.ustc.edu.cn
  • 基金资助:
    Supported by National Key Research and Development Program of China (国家重点研发计划项目, 2018YFD0700302)

Design and optimization of visible and near infrared nondestructive determination model for apple acidity

ZHANG Yunqi1;2, CUI Chaoyuan1*, CHEN Yong1;2, LU Cuiping3   

  1. ( 1 Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 School of Advanced Manufacturing Engineering, Hefei University, Hefei 230061, China )
  • Received:2020-12-07 Revised:2021-01-12 Published:2022-07-28 Online:2022-07-28

摘要: 针对苹果酸度可见-近红外无损测定, 设计了一套优化的偏最小二乘(PLS) 定量预测模型。首先, 采用 Savitzky-Golay 平滑结合小波变换对光谱数据进行预处理, 再通过连续投影法(SPA) 生成建模集, 同时通过竞争 自适应重加权采样法(CARS) 和SPA 生成建模备选集。随后从建模备选集中以优胜劣汰的方式逐次追加波长 变量至建模集, 并根据建模集构建预测模型, 直至决定系数的变化趋于稳定。实验结果表明: 利用优化的PLS 模 型进行苹果酸度预测时, 其决定系数与相对分析误差分别达到0.9776 与6.6812, 且选取的波长变量数由129 项 降至36 项, 明显优于SPA 和CARS 法。本方法在保证模型精度的同时降低了其复杂程度, 为苹果酸度在线无损 测定模型的建立提供了重要参考。

关键词: 光谱学, 无损测定, 波长选择, PLS 模型, 苹果酸度, 决定系数

Abstract: An optimized partial least squares (PLS) quantitative prediction model is designed for the nondestructive determination of apple acidity by visible and near infrared spectroscopy (Vis-NIRS). Firstly, Savitzky-Golay smoothing combined with wavelet transform is used to preprocess the spectral data. Then the successive projections algorithm (SPA) is used to generate a modeling set, and a modeling candidate set is also generated at the same time by the competitive adaptive reweighted sampling (CARS) and SPA. Furthermore, the wavelength variable is successively selected from the modeling candidate set to the modeling set, and a prediction model is established finally according to the modeling set until the change of the determination coefficient tends to be stable, thus achieving a best-fit model. The experimental results show that when apple acidity is predicted, the determination coefficient and the relative percent deviation of the optimized PLS model reaches 0.9776 and 6.6812 respectively, and the number of selected wavelength variables is reduced from 129 to 36, which is obviously superior to that of SPA and CARS. The designed model not only ensures the model accuracy, but also reduces its complexity, which provides an important reference for the establishment of online nondestructive determination model of apple acidity.

Key words: spectroscopy, nondestructive determination, wavelength selection, partial least squares model, apple acidity, determination coefficient

中图分类号: