[1] Ablowitz M J, Clarkson P A. Solitons nonlinear evolution equations and inverse scattering[M]. Cambridge:Cambridge university press, 1991.
[2] Liu Shanliang, Wang Wenzheng, Xu Jingzhi. The solitary waves solution of the extend nonlinear schr dinger equation with the bandwidth-limited optical gain and loss terms[J]. Chinese Journal of Quantum Electronics(量子电子学报),1994,11(1):55-60(in Chinese).
[3] Taogetusang, Sirendaoerji. Jacobi elliptic function exact solutions of sine-Gordon equation[J].Chinese Journal of Quantum Electronics(量子电子学报),2009,26(3):278-287(in Chinese).
[4] Burgers J M. Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion[J]. Trans Roy Neth Acad Sci Amsterdam,1939,17(2):1-53.
[5] Wang Mingliang. Nonlinear Evolution Equations and Solitons[M]. Lan Zhou: Lanzhou University Press, 1990.
[6] Naranmandula ,Wang kexie. Multisoliton-like solutions for (2+1)-dimensional dispersive long wave equations and (2+1)-dimensional Broer-Kaup equations[J].Acta Physica Sinica(物理学报), 2003, 52(7): 1565-1568(in Chinese).
[7] Tian Guichen, Liu Xiqiang. Exact solutions of the general variable coefficient KdV equation with external force term[J]. Chinese Journal of Quantum Electronics(量子电子学报),2005,22(3):339-343(in Chinese).
[8] Taogetusang, Sirendaoerji. The Jacobi elliptic function-like exact solutions totwo kinds of KdV equations with variable coefficients and KdV equation with forcible term[J]. Chinese Physics,2006,15(12):2809-2818.
[9] Guo Guanping,Zhang Jiefang. A method to solve soliton-like solution for a variable coefficient KP equation[J]. Journal of Lanzhou University(Natural Sciences)(兰州大学学报(自然科学版)),2002,38(2):18-21(in Chinese).
[10] Taogetusang, Sirendaoerji.Jacobi-like elliptic function exact solutions of(3+1)-dimensional Zakharov-Kuznetsov equation with variable coefficients[J]. Chinese Journal of Quantum Electronics(量子电子学报),2010,27(1):6-14(in Chinese).
[11] Nimmo J J C, Crighton D G. Backlund transformations for nonlinear parabolic equations: the general results[J]. Proc. R. Soc. Lond. A, 1982, 384: 381-401.
[12] Hong W P. On B cklund transformation for a generalized Burgers equation and solitonic solutions[J].Phys.Lett.A,2000,268:81-84.
[13] Fusco D. Some comments on wave motion described by non-homogeneous quasi-linear first order hyperbolic systems[J]. Meccanica, 1982, 17: 128-137.
[14] Ablowitz M J, De Lillo S. The Burgers equation under deterministic and stochastic forcing[J]. Physica D , 1996, 92: 245-259.
[15] Gao Yitian, Xu Xiaoge and Tian Bo. Variable-Coefficient Forced Burgers System in Nonlinear Fluid Mechanics and its possibly Observable Effects[J],International Journal of Modern Physics C, 2003, 14(9): 1207-1222.
[16] Blatter G. Vortices in high-temperature superconductors. Rev. Mod. Phys. 1994, 66: 1125-1128.
[17] Godreche C. Solids Far from Equilibrium[M]. Cambridge: Cambridge University Press, 1992
[18] Oliveri F. Painleve′analysis and similarity solutions of Burgers equation with variable coefficients[J]. journal of Engineering Mathematics, 1991, 25: 317-327.
[19] Fusco D. Some comments on wave motion described by non-homgeneous quasi-linear first order hyperbolic systems[J]. Meccanica, 1982, 17: 128-137.
[20] Doyle J, Englefield M J. Similarity solutions of a generalized Burgers equation[J]. IMA J. Appl. Math. 1990, 44: 145-153.
[21] Wang Mingliang, Solitary wave solutions for variant Boussinesq equations[J]. Phys.Lett.A, 1995,199:169-172.
[22] Wang Mingliang, Exact solutions for a compound KdV-Burgers equation[J]. Phys.Lett.A, 1996,213:279-287. |