量子电子学报 ›› 2021, Vol. 38 ›› Issue (6): 751-773.doi: 10.3969/j.issn.1007-5461.2021.06.003

• "激光光谱新技术与应用”专辑(续) • 上一篇    下一篇

转动光谱研究分子间 σ-hole 和 π-hole 非共价相互作用

陈军华1 , 王 浩1 , 郑 阳1 , 程琬滢1 , 李卫星2∗ , 徐雪芳1 , 勾 茜1,3∗   

  1. 1 重庆大学化学化工学院, 重庆 401331; 2 复旦大学化学系, 上海 200438; 3 重庆理论与计算化学重点实验室, 重庆 401331
  • 收稿日期:2021-07-07 修回日期:2021-08-16 出版日期:2021-11-28 发布日期:2021-11-28
  • 通讯作者: E-mail: weixingli@fudan.edu.cn; qian.gou@cqu.edu.cn E-mail:E-mail: weixingli@fudan.edu.cn; qian.gou@cqu.edu.cn
  • 作者简介:陈军华 ( 1989 - ), 重庆人, 博士生, 主要从事团簇非共价相互作用方面的研究。 E-mail: chenjunh999@163.com
  • 基金资助:
    Supported by General Program and Joint Funds of National Natural Science Foundation of China (国家自然科学基金面上项目和联合基 金, 22073013, U1931104)

Rotational spectroscopic studies on intermolecular σ-hole and π-hole non-covalent interactions

CHEN Junhua 1 , WANG Hao 1 , ZHENG Yang 1 , CHENG Wanying 1 , LI Weixing 2∗ , XU Xuefang 1 , GOU Qian 1,3∗   

  1. 1 School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China; 2 Department of Chemistry, Fudan University, Shanghai 200438, China; 3 Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing 401331, China
  • Received:2021-07-07 Revised:2021-08-16 Published:2021-11-28 Online:2021-11-28

摘要: 作为构建宏观物质及维持其结构的重要驱动力, 非共价相互作用虽个体较弱, 但其协同作用不可忽视。 经过多年来对其物理本质及原理的不断探索, 非共价键的研究重心已经从传统氢键延伸到其他包含多种多样结 构和能量的弱相互作用。在众多的实验手段中, 气相分子的转动光谱数据可以提供其他手段无可比拟的高精度, 而且避免了凝聚相实验数据中环境因素的干扰, 能够揭示各种非共价键相互作用的本质。同时,转动光谱对研 究对象的质量分布极其敏感, 即使微小的质量分布变化 (如同位素取代、异构化等) 也会引起其转动光谱谱图的 明显变化。因此可以说转动光谱是最准确的高分辨分子光谱技术。首先简要介绍了转动光谱的基本原理和表 征非共价相互作用的优势, 随后全面综述了转动光谱研究 σ-hole 和 π-hole 非共价相互作用的最新成果, 展示了 转动光谱在评估非共价相互作用体系的结构和能量方面的能力, 预示着其从传统基础研究转移到超分子化学和 晶体工程等相关领域研究的可能性。

关键词: 光谱学, 非共价相互作用, σ-hole, π-hole, 转动光谱

Abstract: As important driving forces for building a wide variety of architectures and assemblies in macroscopic systems, non-covalent interactions are individually weak but collectively important. For decades of on-going pursuits on the physical origins, the portfolio of non-covalent interactions has largely expanded from conventional hydrogen bonds to diverse chemical combinations with different structural and energetic boundaries. Among many experimental techniques, rotational spectroscopy can not only offer unexplored avenues for high resolution studies in gas-phase, but also unravel the nature of noncovalent interactions in condensed phases, avoiding the interference of environmental factors. In addition, rotational spectroscopy is arguably the most accurate molecular spectroscopic technique due to its high sensitivity to mass distributions of isolated molecules and molecular complexes, even subtle differences in mass distribution (arising from isotopic substitution, isomerization, tautomerization or conformerization) can lead significant changes in the pattern of rotational transitions. In this review, the basic principles and advantages of rotational spectroscopy in characterizing non-covalent interactions are briefly introduced firstly. Then, the lastest achievements of rotational investigations in σ-hole and π-hole non-covalent interactions are comprehensively reviewed, which fully shows the ability of rotational spectroscopy in structural and energetic assessment of inter molecular non-covalent interactions, and indicates its potential contribution to the transition from fundamental understandings to applications in supramolecular chemistry and crystal engineering.

Key words: spectroscopy, non-covalent interactions, σ-hole, π-hole, rotational spectroscopy

中图分类号: