J4 ›› 2014, Vol. 31 ›› Issue (6): 656-662.

• 图像与信息处理 • 上一篇    下一篇

基于压缩感知的偏振鬼成像系统

张娜   

  1. 河南城建学院计算机科学与工程学院, 河南 平顶山 467036
  • 收稿日期:2014-07-28 修回日期:2014-08-21 出版日期:2014-11-28 发布日期:2014-11-17
  • 通讯作者: 张娜(1980-),女,博士,讲师,从事模式识别、智能系统研究。 E-mail:znwang1010@126.com
  • 基金资助:
    国家自然科学基金项目(61202248),河南省科技发展计划科技攻关重点项目(122102210412)

Polarization Ghost Imaging System Based on Compressed Sensing

Zhang Na   

  1. Institute of Computer Science and Engineering of Henan University and Urban Construction,Pindingshan 467036, China
  • Received:2014-07-28 Revised:2014-08-21 Published:2014-11-28 Online:2014-11-17

摘要: 偏振鬼成像系统结合了强度和偏振探测,扩展了鬼成像系统的信息量,可以进行有效的目标识别和探测。常规相关偏振鬼成像系统需要大量采样数,且复原结果信噪比低。为此提出基于缩感知的偏振鬼成像系统,利用系统获取物体的强度和偏振参数,采用压缩感知算法来反演获取物体的强度和偏振信息。利用仿真实验,采用具有相同反射率但不同偏振特性的物体进行研究,结果表明采用压缩感知算法可以在很少的采样数下获取高质量的物体强度和偏振信息,提高了系统的实时性,并与相关算法进行了对比。最后采用图像融合算法对强度和偏振信息进行了融合,通过融合信息可以有效地进行多种物体的识别。

关键词: 鬼成像, 压缩感知, 偏振探测

Abstract: Polarization ghost imaging system combines the strength and the polarization detection, expanded the obtained information form the ghost imaging system, can effective detection and identification target. The conventional correlation polarization ghost imaging systems requires a large amount of sampling data, and signal to noise of the restored results is low. Polarization ghost imaging system based on compressed sensing is proposed to get the intensity and polarization information of the object by the detected information form the point detector. In the simulation experiment, the same reflectivity but different polarization characteristics of objects are employed. The results show that the high quality of the object intensity and polarization information can be obtained with little sample number compared with the correlation method, and it can improve the real-time performance. Finally, using image fusion algorithm to merge the intensity and polarization information, recognition by fusing information can be effectively carried out a variety of objects.

Key words: Ghost imaging, Compressed sensing, Polarization detection