J4 ›› 2015, Vol. 32 ›› Issue (2): 144-149.

• 图像与信息处理 • 上一篇    下一篇

基于量子关联成像的图像重构算法采样数研究

苏枫,刘翔, 龙华保,卢山,阳光   

  1. 1上海航天控制技术研究所,上海 200233; 2上海航天技术研究院红外技术研究发展中心,上海 200233; 3 上海市空间智能控制技术重点实验室 上海 200233
  • 收稿日期:2014-07-08 修回日期:2014-10-25 出版日期:2015-03-28 发布日期:2015-03-17
  • 通讯作者: 苏枫(1986—),女,湖北人,工程师,主要研究方向为光电探测与制导。 E-mail:sufeng1220@qq.com
  • 基金资助:
    国家重大科学仪器设备开发专向(2012YQ150092)、上海市科技人才计划项目资助(14QB1401800)

Number of Samples of Image Reconstruction Arithmetic Based On Quantum correlated Imaging

SU Feng, LIU Xiang,LONG Hua-bao, LU Shan,Yang Guang   

  1. 1 Shanghai Institute of Spacecraft Control Technology, Shanghai 200233, China; 2 Development Center of Infrared Technology, Shanghai Academy of Spaceflight Technology, Shanghai 200233, China; 3 Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 200233, China
  • Received:2014-07-08 Revised:2014-10-25 Published:2015-03-28 Online:2015-03-17

摘要:

量子关联成像技术采用单点强度探测,存贮信息量大,成像速度慢,需研究快速图像重构成像算法。对量子关联成像技术图像重构算法中的统计迭代法和压缩感知算法的采样次数进行了仿真分析,压缩感知算法采用二维离散余弦变换(DCT)将图像稀疏化,高斯随机矩阵作为测量矩阵,正交匹配追踪(OMP)算法对图像进行重构。结果表明:图像越大,重构图像需要的采样次数和采样时间越长,采用压缩感知算法能有效减少采样次数,从而提高系统成像速度。因此,研究量子关联成像的图像重构算法,减少图像的采样次数,对提高成像速度具有重要意义。

关键词: 量子光学, 采样数, 关联成像, 压缩感知, 正交匹配追踪

Abstract:

Quantum correlated imaging technology adopts single-point intensity detecting, huge information storage, slow imaging speed, so faster image reconstruction algorithm is required. The simulation of samples with image reconstructing algorithm is based on statistical arithmetic and compressed sensing respectively. The inputs of the compressed sensing algorithm are sparse images which are calculated with Discrete Cosine Transform (DCT) and gauss random matrices, reconstructing image with Orthogonal Matching Pursuit (OMP). The result shows that the correlated imaging algorithm based on compressed sensing can lessen the number of measurements and save data space and speed. Therefore, the study of quantum correlated imaging image reconstruction algorithm has great significance for lessening the number of samples and improving imaging speed.

Key words: quantum optics, sampling time, corrected imaging, compressed sensing, OMP