[1] Raimond J, Brune M, and Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity [J]. Rev. Mod. Phys, 2001, 73, 565. [2] Braunstein S L and Loock P. Quantum information with continuous variables [J]. Rev. Mod. Phys, 2005, 77, 513. [3] Horodecki R, Horodecki P, Horodecki M et al. Quantum entanglement [J]. Rev. Mod. Phys, 2009, 81(2): 865-931. [4] Raimond J, Brune M, and Haroche S. Manipulating quantum entanglement with atoms and photons in a cavity [J]. Rev. Mod. Phys, 2001, 73, 565. [5] Schoelkopf R J and Girvin S M. Wiring up quantum systems [J]. Nature, 2008, 451: 664-669. [6] Clarke J and Wilhelm F K. Superconducting quantum bits [J]. Nature, 2008, 453: 1031-1038. [7] Mariantoni M, Wang H, Yamamoto T et al. Implementing the quantum von Neumann architecture with superconducting circuits [J]. Science, 2011 334(6052): 61-65. [8] Eichler C, Bozyigit D, Lang C et al. Observation of Two-Mode Squeezing in the Microwave Frequency Domain [J]. Phys. Rev. Lett, 2011, 107(11): 113601(5). [9] Zhong L, Menzel E P, Candia R D et al. Squeezing with a flux-driven Josephson parametric amplifier [J]. New J. Phys, 2013, 15: 125013. [10] Zhou X, Schmitt V, Bertet P et al. High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array [J]. Phys. Rev. B, 2014, 89: 214517(7). [11] Mutus J Y, White T C, Barends R et al. Strong environmental coupling in a Josephson parametric amplifier [J]. Appl. Phys. Lett, 2014, 104(26): 263513(4). [12] White T C, Mutus J Y, Hoi I C et al. Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. arXiv:1503.04364v1 [cond-mat.supr-con], 2015. [13] Stehlik J, Liu Y Y, Quintana C M et al. Fast Charge Sensing of a Cavity-Coupled Double Quantum Dot Using a Josephson Parametric Amplifier [J]. Phys. Rev. Appl, 2015, 4(1): 014018(10). [14] Trif M, Simon P. Photon cross-correlations emitted by a Josephson junction in two microwave cavities [J]. Phys. Rev. B, 2015, 92(1): 014503(10). [15] Leppakangas J, Johansson G, Marthaler M et al. Nonclassical Photon Pair Production in a Voltage-Biased Josephson Junction [J]. Phys. Rev. Lett, 2013, 110(26): 267004(5). [16] Armour A D, Kubala B, Ankerhold J. Josephson photonics with a two-mode superconducting circuit [J]. Phys. Rev. B, 2015, 91(18): 184508(12). [17] Bergeal N, Vijay R, Manucharyan V E et al. Analog information processing at the quantum limit with a Josephson ring modulator [J]. NATURE PHYSICS, 2010, 6: 296-302. [18] Klauder J R, McCall S L, and Yurke B. Squeezed states from nondegenerate four-wave mixers [J]. Phys. Rev. A, 1986, 33: 3204-3209. [19] Bergeal N, Schackert F, Metcalfe M et al. Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J]. NATURE, 2010, 465: 64-69. [20] Abdo B, Kamal A, and Devoret M. Non-degenerate, three-wave mixing with the Josephson ring modulator [J]. Phys. Rev. B, 2013, 87: 014508. [21] Flavius S, Ananda R, Michael H et al. Three-Wave Mixing with Three Incoming Waves: Signal-Idler Coherent Attenuation and Gain Enhancement in a Parametric Amplifier [J]. Phys. Rev. Lett, 2013, 111(7): 073903(5). [22] Roch N, Flurin E, Nguyen F et al. Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit [J]. Phys. Rev. Lett, 2012, 108: 1-5. [23] Pillet J D, Flurin E, Mallet F et al. A compact design for the Josephson mixer: the lumped element circuit [J]. Appl. Phys. Lett, 2015, 106: 222603. [24] Flurin E, Roch N, Mallet F et al. Generating Entangled Microwave Radiation Over Two Transmission Lines [J]. Phys. Rev. Lett, 2012, 109(18): 183901(5). [25] Girvin S M. Basic Concepts in Quantum Information. arXiv:1302.5842v1 [quant-ph], 2013.
|