J4 ›› 2017, Vol. 34 ›› Issue (1): 54-61.
黄劲松,徐中辉,钟阳万
收稿日期:
2015-09-28
修回日期:
2015-12-09
出版日期:
2017-01-28
发布日期:
2017-01-28
通讯作者:
黄劲松(1977- ),湖北大冶人,博士,讲师,主要从事量子光学和量子信息等方面的研究。
E-mail:jshuangjs@126.com
基金资助:
HUANG Jinsong , XU Zhonghui,ZHONG Yangwan
Received:
2015-09-28
Revised:
2015-12-09
Published:
2017-01-28
Online:
2017-01-28
摘要: 在线性离散关系下研究了一维波导中两个并列放置的原子之间的量子纠缠。为调查两原子间的纠缠度,用实空间方法计算了透射和反射光谱振幅,讨论了单光子的散射特性和纠缠态的并发性。结果表明:通过改变原子偶极-偶极相互作用可产生Fano线型的散射光谱,偶极-偶极相互作用可作为导致光谱Fano共振的一种可能的工具。通过调控原子-波导的耦合强度,量子并发也会发生Fano共振,可通过观察Fano共振推断出最大量子纠缠。
中图分类号:
黄劲松 徐中辉 钟阳万. 一维波导中并置两原子的量子纠缠[J]. J4, 2017, 34(1): 54-61.
HUANG Jinsong , XU Zhonghui,ZHONG Yangwan. Quantum entanglement of two collocated atoms in a one-dimensional waveguide [J]. J4, 2017, 34(1): 54-61.
Reference:[1] Grover L K. Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett., 1997,79: 325.[2] Pereira S F, Ou Z Y, Kimble H J. Quantum communication with correlated nonclassical states[J]. Phys. Rev. A, 2000, 62: 042311.[3] Aspect A. Bell's inequality test: more ideal than ever [J]. Nature, 1999, 398: 189; Zou Yan. Entanglement properties in the system of atoms in Bell states interacting with the two-mode odd-even entangled coherent field[J], Chinese journal of quantum electronics (量子电子学报), 2009, 26(1): 69-75 (in chinese).[4] Julsgaard B, Kozhekin A, Polzik E S. Experimental long-lived entanglement of two macroscopic objects [J]. Nature, 2001, 413: 400; Han Yunxia, Hu Yaohua. Effect of linear modulation of atom-field coupling on atom entanglement [J]. Chinese journal of quantum electronics (量子电子学报), 2014, 31(6): 715-719 (in chinese); Bao li, Sachuerfu, Wu Shumei. Quantum entanglement of the binomial field interacting with the moving atoms in the multiphoton Tavis-Cummings model [J]. Chinese journal of quantum electronics (量子电子学报), 2010, 27(5): 580-585 (in chinese).[5] Turchette Q A, Wood C S, King B E, et al. Deterministic entanglement of two trapped ions[J]. Phys. Rev. Lett., 1998, 81: 3631.[6] Fleischhauer M, Yelin S F, Lukin M D. How to trap photons? Storing single-photon quantum states in collective atomic excitations [J]. Opt. Commun., 2000, 179: 395.[7] Blatt R and Wineland D. Entangled states of trapped atomic ions [J]. Nature, 2008, 453: 1008.[8] Stievater T H, Li X, Steel D G, et al. Rabi oscillations of excitons in single quantum dots [J]. Phys. Rev. Lett., 2001, 87: 133603.[9] Li X, Wu Y, Steel D G, et al. An all-optical quantum gate in a semiconductor quantum dot [J]. Science, 2003, 301: 809; Shi Peng, Li Jianjian, Chen Libo, et al. Dynamics of interaction between single photon and cavity-quantum dot system [J]. Chinese journal of quantum electronics (量子电子学报), 2012, 29(2): 165-170 (in chinese).[10] Steffen M, Ansmann M, Bialczak R C, et al. Measurement of the entanglement of two superconducting qubits via state tomography [J]. Science, 2006, 313: 1423; Ding Zhiyong, He Juan, Wu Tao. One step for generation of W-class states via superconducting quantum interference devices [J]. Chinese journal of quantum electronics (量子电子学报), 2010, 27(3): 314-318 (in chinese).[11] Shen J T, Fan S. Coherent photon transport from spontaneous emission in one-dimensional waveguides [J]. Opt. Lett., 2005, 30: 2001; ibid. Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom [J]. Phys. Rev. A, 2009, 79: 023837; ibid. Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom [J]. Phys. Rev. A, 2009, 79: 023838; ibid. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits[J]. Phys. Rev. Lett., 2005, 95: 213001.[12] Roy D. Two-photon scattering of a tightly focused weak light beam from a small atomic ensemble: An optical probe to detect atomic level structures [J]. Phys. Rev. A, 2013, 87: 063819.[13] Chen Y L, Xiao Y F, Zhou X X, et al. Single-photon transport in a transmission line resonator interacting with two capacitively coupled Cooper-pair boxes [J]. J. Phys. B: At. Mol. Opt. Phys., 2008, 41: 175503.[14] Zhou L, Gong Z R, Liu Y X, et al. Controllable scattering of a single photon inside a one-dimensional resonator waveguide [J]. Phys. Rev. Lett., 2008, 101: 100501; Zhou L, Dong H, Liu Y X, et al. Quantum supercavity with atomic mirrors [J]. Phys. Rev. A, 2008, 78: 063827; Liao J Q, Gong Z R, Zhou L, et al. Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities [J]. Phys. Rev. A, 2010, 81: 042304. [15] Gonzalez-Tudela A, Martin-Cano D, Moreno E, et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides [J]. Phys. Rev. Lett., 2011, 106: 020501.[16] Chen G Y, Lambert N, Chou C H, et al. Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement [J]. Phys. Rev. B, 2011, 84: 045310.[17] Chen G Y, Chen Y N. Correspondence between entanglement and Fano resonance of surface plasmons [J]. Opt. Lett., 2012, 37: 4023.[18] Cheng M T, Ma X S, Luo Y Q, et al. Entanglement generation and quantum state transfer between two quantum dot molecules mediated by quantum bus of plasmonic circuits [J]. Appl. Phys. Lett., 2011, 99: 223509.[19] Chen G Y, Li C M, Chen Y N. Generating maximum entanglement under asymmetric couplings to surface plasmons [J]. Opt. Lett., 2012, 37: 1337.[20] Chen Y N, Chen G Y, Chuu D S, et al. Quantum-dot exciton dynamics with a surface plasmon: Band-edge quantum optics [J]. Phys. Rev. A, 2009, 79: 033815.[21] Chen W, Chen G Y, Chen Y N. Coherent transport of nanowire surface plasmons coupled to quantum dots [J]. Opt. Expr., 2010, 18: 10360.[22] Chen G Y, Liu M H, Chen Y N. Scattering of microwave photons in superconducting transmission-line resonators coupled to charge qubits [J]. Phys. Rev. A, 2014, 89: 053802.[23] Wootters W K. Entanglement of formation of an arbitrary state of two qubits [J]. Phys. Rev. Lett., 1998, 80: 2245. |
[1] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[2] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[3] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[4] | 贾 玮 , 张强强 , 卞宇翔 , 李 威 . E91-QKD 中集体攻击上限的研究[J]. 量子电子学报, 2023, 40(3): 407-414. |
[5] | 曹 睿 , 袁晨智 , 沈 思 , 张子昌 , 范云茹 , 李加睿 , 李 浩 , 尤立星 , 周 强 , 王子竹∗. 三维时间片最大纠缠态的最优检测[J]. 量子电子学报, 2023, 40(1): 85-94. |
[6] | 唐世彪∗ , 李 志 , 郑伟军 , 张万生 , 高 松 , 李亚麟 , 程 节 , 蒋连军. 量子密钥分发系统防死时间攻击方案研究[J]. 量子电子学报, 2023, 40(1): 95-103. |
[7] | 阮志强, 张 磊, 赵欣瑜, 江兴方∗. 一种新型圆形掺杂光子晶体光纤负色散特性的分析[J]. 量子电子学报, 2023, 40(1): 133-138. |
[8] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[9] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[10] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[11] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[12] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[13] | 赵良圆 曹凌云 梁洪源 韦峥 伍千军 钱建林 韩正甫. 基于不同光纤的波分复用型量子密钥分配研究[J]. 量子电子学报, 2022, 39(5): 776-785. |
[14] | 张 瑞, 梅大江, ∗, 石小兔, 马荣国, 张庆礼, ∗, 窦仁勤, 刘文鹏, . YAG 晶体的位错研究进展[J]. 量子电子学报, 2022, 39(5): 687-706. |
[15] | 王晶晶, 刘玉洁, 郑丽∗. 基于超强耦合腔光力系统制备的 宏观量子态特性分析[J]. 量子电子学报, 2022, 39(4): 598-604. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||