J4 ›› 2017, Vol. 34 ›› Issue (1): 99-105.

• 半导体光电 • 上一篇    下一篇

梯度掺杂GaN光电阴极的光谱响应测试与分析

李飙1,常本康2,陈文聪1   

  1. 1商丘师范学院物理与电气信息学院, 河南 商丘 476000; 2南京理工大学电子工程与光电技术学院,江苏 南京 210094
  • 收稿日期:2015-10-13 修回日期:2015-12-03 出版日期:2017-01-28 发布日期:2017-01-28
  • 通讯作者: 李 飙(1974-),河南太康人,博士,讲师。主要研究方向为光电器件性能检测与评估。 E-mail:libiao2006@126.com
  • 基金资助:
    Supported by National Natural Science Foundation of China(国家自然科学基金, 61171042)

Spectral response measurement and analysis of gradient-doping GaN photocathode

LI Biao1,CHANG Benkang2,CHEN Wencong1   

  1. 1 School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000, China; 2 Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2015-10-13 Revised:2015-12-03 Published:2017-01-28 Online:2017-01-28

摘要: 用光谱响应测试仪得到了反射式梯度掺杂GaN光电阴极在激活和衰减过程中的光谱响应曲线,发现此曲线不断发生变化。在激活过程中光谱响应不断提高,且长波响应提高较快;衰减过程中光谱响应不断下降,长波响应下降得更快。结果表明:光谱响应曲线的变化与光电阴极高能光电子的逸出有关。GaN光电阴极发射的电子能量分布随入射光子能量升高而向高能端偏移,阴极表面势垒形状的变化对低能光激发电子的影响更大,导致光谱响应曲线随入射光波长改变而产生了不同的变化。

关键词: 光电子学;光谱响应曲线;氮化镓;光电阴极;电子能量分布;表面势垒

Abstract: The spectral response curves of reflection-type gradient-doping GaN photocathode in the process of activation and attenuation are obtained with the spectral response measurement instrument. It’s found that the curve is constantly changing. The spectral response improves continuously in the process of activation, and the long wave response increases faster. The spectral response decreases continuously in the process of attenuation, and the long wave response decreases faster. Results show that the variation of spectral response curve is related to the escape of the high energy photoelectron of photoelectric cathde. The electron energy distribution of GaN photocathode is shifted to the high energy side with increasing of the incident photon energy. Influence of cathode surface potential barrier shape change on low energy light excited electrons is even greater, which leads to different change in spectral response curve with incident light wavelength.

Key words: optoelectronics; spectral response curves; GaN; photocathode; electron energy distribution; surface potential barrier