J4 ›› 2018, Vol. 35 ›› Issue (4): 451-454.

• 量子光学 • 上一篇    下一篇

双光子纠缠体系中的非定域性和稳健性

赵加强,曹连振, 杨 阳, 逯怀新   

  1. 潍坊学院物理与光电工程学院, 山东 潍坊 261061
  • 收稿日期:2017-12-26 修回日期:2018-04-03 出版日期:2018-07-28 发布日期:2018-07-12
  • 通讯作者: 赵加强(1976-),山东郓城人,博士,副教授,主要从事量子信息方面的研究。 E-mail:zhaojiaqiang@wfu.edu.cn
  • 基金资助:

    Supported by National Natural Science Foundation of China (国家自然科学基金, 11404246, 11447225), Natural Science Foundation of Shandong Province (山东省自然科学基金, ZR2017MF040, BS2015DX015, ZR2014JL029)

Nonlocality and robustness in two-photon entangled system

ZHAO Jiaqiang, CAO Lianzhen, YANG Yang,LU Huaixin   

  1. Department of Physics and Optoelectronic Engineering, Weifang University, Weifang 261061, China
  • Received:2017-12-26 Revised:2018-04-03 Published:2018-07-28 Online:2018-07-12

摘要:

利用非线性晶体的II型参量下转换和极化后选择方法,制备了高品质的极化双光子纠缠态。在双光子纠缠系统中实验测量了Clauser-Horne-Shimony-Holt (CHSH)和Cavalcanti-Bell (C-B)不等式对定域实在论的违背 ,得到CHSH、C-B不等式的值分别为2.64±0.021、2.75±0.019。 利用线性光学器件模拟了量子信道中的比特翻转噪声,实验研究了CHSH型不等式在比特翻转噪声环境下的稳健性,结果表明在比特翻转噪声环境中C-B比CHSH不等式对噪声具有更强的稳健性,为进一步研究纠缠在量子信息处理中的应用提供了实验支持。

关键词: 量子光学;量子纠缠;非定域性;参量下转换;CHSH不等式;C-B不等式

Abstract:

A high quality polarized two-photon entangled state is prepared by using the method of II type parametric down conversion and polarization post selection of nonlinear crystals. The violation of Clauser-Horne-Shimony-Holt(CHSH) and Cavalcanti-Bell (C-B) inequalities to the are experimentally measured in two-photon entangled system, and the values of CHSH, C-B inequalities, 2.64±0.021 and 2.75±0.019, are obtained respectively. The bit flip noise in quantum channels is simulated by linear optical devices, and the robustness of CHSH-type inequality in bit-flipping noise environment is experimentally investigated. Results show that C-B inequality is more robust to noise than CHSH inequality in bit-flipping noise environment, which provides experimental support for further study the application of entanglement in quantum information processing.

Key words: quantum optics; quantum entanglement; nonlocality; parametric down conversion; Clauser-Horne-Shimony-Holt inequality; Cavalcanti-Bell inequality

中图分类号: