量子电子学报 ›› 2020, Vol. 37 ›› Issue (4): 392-408.
余佳益1;2, 蔺淑琴1;2, 徐颖1;2, 朱新蕾3, 王飞3, 蔡阳健1;2;3∗
收稿日期:
2020-05-09
修回日期:
2020-06-21
出版日期:
2020-07-28
发布日期:
2020-07-21
通讯作者:
蔡阳健
E-mail:yangjiancai@suda.edu.cn
作者简介:
余佳益( 1992 - ), 浙江宁波人, 博士, 讲师, 硕士生导师, 主要从事光场调控, 激光传输, 光与物质相互作用等方面的研究。
E-mail: jiayiyu0528@sdnu.edu.cn
蔡阳健( 1977 - ), 浙江台州人, 博士, 教授, 博士生导师, 主要从事光场调控, 激光传输, 光与物质相互作用等方面的研究。
E-mail: yangjiancai@suda.edu.cn
基金资助:
YU Jiayi1;2, LIN Shuqin1;2, XU Ying1;2, ZHU Xinlei3, WANG Fei3, CAI Yangjian1;2;3∗
Received:
2020-05-09
Revised:
2020-06-21
Published:
2020-07-28
Online:
2020-07-21
Contact:
Yangjian Cai
E-mail:yangjiancai@suda.edu.cn
摘要: 相干性是激光束的一个重要特性, 具有低空间相干性的激光束称为部分相干光束; 关联结构(函数) 是部 分相干光束的一个特有参量, 通过调控相干性可构建具有特殊关联结构的部分相干光束。在湍流大气中, 特殊关 联结构部分相干光束不仅展现出诸多奇特传输性质, 而且能够进一步有效抑制大气湍流引起的光强及相干度分布 退化、光斑漂移和光强闪烁等各种湍流负面效应, 在自由空间光通信、激光雷达和激光遥感等方面有重要应用前 景。近年来特殊关联结构部分相干光束大气传输研究受到越来越多学者的关注。回顾了特殊关联结构部分相干 光束大气传输研究方法和发展历程, 举例展示了厄米系列特殊关联结构部分相干光束的大气传输研究成果。
中图分类号:
余佳益, 蔺淑琴, 徐颖, 朱新蕾, 王飞, 蔡阳健, ∗. 特殊关联结构部分相干光束大气传输研究进展[J]. 量子电子学报, 2020, 37(4): 392-408.
YU Jiayi, LIN Shuqin, XU Ying, ZHU Xinlei, WANG Fei, CAI Yangjian, ∗. Research progress of propagation of partially coherent beams with special coherence structure in turbulent atmosphere[J]. Chinese Journal of Quantum Electronics, 2020, 37(4): 392-408.
[1] | Jiang Huilin. The Technologies and Systems of Space Laser Communication (空间激光通信技术与系统) [M]. Beijing: |
National Defense Industry Press, 2010 (in Chinese). | |
[2] | Wang F, Yu J, Liu X, et al. Research progress of partially coherent beams propagation in turbulent atmosphere [J]. Acta |
Physica Sinica (物理学报), 2018, 67(18): 184203 (in Chinese). | |
[3] | Wang F, Liu X, Cai Y. Propagation of partially coherent beam in turbulent atmosphere: A review[J]. Progress in Electromagnetics |
Rresearch, 2015, 150: 123-143. | |
[4] | Hardy J W. Adaptive Optics for Astronomical Telescopes [M]. New York: Oxford University Press, 1998. |
[5] | Lukin V P, Fortes B V. Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong |
intensity fluctuations [J]. Applied Optics, 2002, 41(27): 5616-5624. | |
[6] | Friberg A T, Sudol R J. Propagation parameters of gaussian Schell-model beams [J]. Optics Communications, 1982, 41(6): |
38 | 3-387. |
[7] | Deschamps J, Courjon D, Bulabois J. Gaussian Schell-model sources-An example and some perspectives [J]. Journal of the |
Optical Society of America, 1983, 73(3): 256-261. | |
[8] | Mitchell M, Chen Z, Shih M F, et al. Self-trapping of partially spatially incoherent light [J]. Physical Review Letters, 1996, |
77 | (3): 490-493. |
[9] | Mitchell M, Segev M, Coskun T H. Theory of incoherent solitons: Self-trapped spatially incoherent light beams [C]. Quantum |
Electronics Conference, 1998. | |
[10] | Akhmediev N, Kr´olikowski, Snyder A W. Partially coherent solitons of variable shape [J]. Physical Review Letters, 1998, |
81 | (21): 4632-4635. |
[11] | Paganin D, Nugent K A. Noninterferometric phase imaging with partially coherent light [J]. Physical Review Letters, 1998, |
80 | (12): 2586-2589. |
[12] | Dubois F, Joannes L, Legros J C. Improved three-dimensional imaging with a digital holography microscope with a source of |
partial spatial coherence [J]. Applied Optics, 1999, 38(34): 7085-7094. | |
[13] | Gureyev T E, Paganin D M, Stevenson A W, et al. Generalized Eikonal of partially coherent beams and its use in quantitative |
imaging [J]. Physical Review Letters, 2004, 93(6): 068103. | |
[14] | Wu G, Cai Y. Detection of a semirough target in turbulent atmosphere by a partially coherent beam [J]. Optics Letters, 2011, |
36 | (10): 1939-1941. |
[15] | Clark J N, Huang X, Harder R, et al. High-resolution three-dimensional partially coherent diffraction imaging [J]. Nature |
Communications, 2012, 3(8): 993. | |
[16] | Kagalwala K H, Di Giuseppe G, Abouraddy A F, et al. Bell’s measure in classical optical coherence [J]. Nature Photonics, |
20 | 12, 7(1): 72-78. |
[17] | Canc¸ado L G, Beams R, Jorio A, et al. Theory of spatial coherence in near-field Raman scattering [J]. Physical Review X, |
20 | 14, 4(3): 031054. |
[18] | Qian X F, Little B, Howell J C, et al. Shifting the quantum-classical boundary: Theory and experiment for statistically classical |
optical fields [J]. Optica, 2015, 2(7): 611-615. | |
[19] | Cai Y, Chen Y, Yu J, et al. Generation of partially coherent beams [J]. Progress in Optics, 2017, 62: 157-223. |
[20] | Chen Y H, Wang F, Cai Y J. Recent progress in modulating the spatial correlation functions of partiallycoherent beams [J]. |
Progress in Physics (物理学进展), 2015, 35(2): 51-73 (in Chinese). | |
[21] | Cai Y, Chen Y, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: |
A review [J]. Journal of the Optical Society of America A, 2014, 31(9): 2083-2096. | |
[22] | Tamburini F, Anzolin G, Umbriaco G, et al. Overcoming the Rayleigh criterion limit with optical vortices [J]. Physical Review |
Letters, 2006, 97(16): 163903. | |
[23] | Wang H, Sheppard C J R, Ravi K, et al. Fighting against diffraction: Apodization and near field diffraction structures [J]. |
Laser & Photonics Reviews, 2012, 6(3): 1-39. | |
[24] | Wang H F, Shi L P, Yuan G Q, et al. Subwavelength and super-resolution nondiffraction beam [J]. Applied Physics Letters, |
20 | 06, 89(17): 171102. |
[25] | Tong Z, Korotkova O. Beyond the classical Rayleigh limit with twisted light [J]. Optics Letters, 2012, 37(13): 2595. |
[26] | Liang C, Wu G, Wang F, et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of |
partially coherent light sources [J]. Optics Express, 2017, 25(23): 28352. | |
[27] | Lavery M P J, Speirits F C, Barnett S M, et al. Detection of a spinning object using light’s orbital angular momentum [J]. |
Science, 2013, 341(6145): 537-540. | |
[28] | Garc´es-Ch´avez V, Mcgloin D, Melville H, et al. Simultaneous micromanipulation in multiple planes using a selfreconstructing |
light beam [J]. Nature, 2002, 419(6903): 145-147. | |
[29] | Mazilu M, Dholakia K, Baumgartl J. Optically mediated particle clearing using Airy wavepackets [J]. Nature Photonics, 2008, |
2( | 11): 675-678. |
[30] | Yu Jiayi. Atmospheric Popagation and Applications of Partially Coherent Beams with Special Spatial Structure (特殊空间结 |
构部分相干光束的大气传输及应用) [D]. Suzhou: Doctorial Dissertation of Soochow University, 2019 (in Chinese). | |
[31] | Born M, Wolf E. Principles of Optics [M]. Cambridge: Cambridge University, 1999. |
[32] | Harlow G R. Wave propagation in a Random Medium [J]. Physics Bulletin, 1960, 11(9): 232-233. |
[33] | Tatarskii V I. Wave Propagation in a Turbulent Medium [M]. New York: McGraw-Hill, 1961. |
[34] | Lutomirski R F, Yura H T. Propagation of a finite optical beam in an inhomogeneous medium [J]. Applied Optics, 1971, 10(7): |
16 | 52-1658. |
[35] | Banakh V A, Krekov G M, Mironov V L, et al. Focused-laser-beam scintillations in the turbulent atmosphere [J]. Journal of |
the Optical Society of America, 1974, 64(4): 516-518. | |
[36] | Andrews L C, Phillips R L. Laser Beam Propagation Through Random Media [M]. SPIE Press, 2005. |
[37] | Dan Y, Zhang B. Second moments of partially coherent beams in atmospheric turbulence [J]. Optics Letters, 2009, 34(5): |
56 | 3-565. |
[38] | Dan Y, Zhang B. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere [J]. Optics Express, |
20 | 08, 16(20): 15563-15575. |
[39] | Siegman A E. New developments in laser resonators [J]. Optical Resonators, 1990, 1224: 2-14. |
[40] | Gori F, Santarsiero M, Sona A. The change of width for a partially coherent beam on paraxial propagation [J]. Optics Communications, |
19 | 91, 82(3-4): 197-203. |
[41] | Xiao X. Beam wander analysis for focused partially coherent beams propagating in turbulence [J]. Optical Engineering, 2012, |
51 | (2): 026001. |
[42] | Gu Y, Gbur G. Scintillation of pseudo-Bessel correlated beams in atmospheric turbulence [J]. Journal of the Optical Society |
of America A, 2010, 27(12): 2621-2629. | |
[43] | Gu Y, Gbur G. Scintillation of nonuniformly correlated beams in atmospheric turbulence [J]. Optics Letters, 2013, 38(9): 1395. |
[44] | Kon A I, Tatarskii V I. On the theory of the propagation of partially coherent light beams in a turbulent atmosphere [J]. |
Radiophysics & Quantum Electronics, 1972, 15(10): 1187-1192. | |
[45] | Belen’Kii M S, Kon A I, Mironov V L. Turbulent distortions of the spatial coherence of a laser beam [J]. Soviet Journal of |
Quantum Electronics, 1977, 7(3): 287-290. | |
[46] | Leader J C. Atmospheric propagation of partially coherent radiation [J]. Journal of the Optical Society of America, 1978, |
68 | (2): 175-185. |
[47] | Fante R L. Two-position, two-frequency mutual-coherence function in turbulence [J]. Journal of the Optical Society of America, |
19 | 81, 71(12): 1446-1451. |
[48] | Leader J C. Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence [J]. |
Journal of the Optical Society of America, 1979, 69(1): 73-84. | |
[49] | Fante R L. Intensity fluctuations of an optical wave in a turbulent medium effect of source coherence [J]. Journal of Modern |
Optics, 2012, 9: 1203-1207. | |
[50] | Banach V A, Buldakov V M, Mironov V L. Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere |
[J] | Optics & Spectroscopy, 1983, 54(6): 626-629. |
[51] | Banakh V A, Buldakov V M. Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a |
turbulent atmosphere [J]. Optics & Spectroscopy, 1983, 55(55): 423-426. | |
[52] | Fante R L. The effect of source temporal coherence on light scintillations in weak turbulence [J]. Journal of the Optical Society |
of America, 1979, 69(1): 71-73. | |
[53] | Wu J. Propagation of a Gaussian-Schell beam through turbulent media [J]. Journal of Modern Optics, 1990, 37(4): 671-684. |
[54] | Wu J, Boardman A D. Coherence length of a Gaussian-Schell beam and atmospheric turbulence [J]. Journal of Modern Optics, |
19 | 91, 38(7): 1355-1363. |
[55] | Gbur G, Wolf E. Spreading of partially coherent beams in random media [J]. Journal of the Optical Society of America A, |
20 | 02, 19(8): 1592-1598. |
[56] | Ponomarenko S A, Greffet J J, Wolf E. The diffusion of partially coherent beams in turbulent media [J]. Optics Communications, |
20 | 02, 208(1-3): 1-8. |
[57] | Dogariu A, Amarande S. Propagation of partially coherent beams: Turbulence-induced degradation [J]. Optics Letters, 2003, |
28 | (1): 10-12. |
[58] | Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence |
[J] | Journal of the Optical Society of America A, 2003, 20(6): 1094-1102. |
[59] | Ricklin J C, Davidson F M. Atmospheric turbulence effects on a partially coherent Gaussian beam: Implications for free-space |
laser communication [J]. Journal of the Optical Society of America A, 2002, 19(9): 1794-1802. | |
[60] | Ricklin J C, Davidson F M. Atmospheric optical communication with a Gaussian-Schell beam [J]. Journal of the Optical |
[61] | Korotkova O. Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom [J]. |
Optical Engineering, 2004, 43(2): 330. | |
[62] | Schulz T J. Iterative transform algorithm for the computation of optimal beams [J]. Journal of the Optical Society of America |
A, 2004, 21(10): 1970-1974. | |
[63] | Schulz T J. Optimal beams for propagation through random media [J]. Optics Letters, 2005, 30(10): 1093-1095. |
[64] | Gori F, Guattari G, Padovani C. Modal expansion for J0-correlated Schell-model sources [J]. Optics Communications, 1987, |
4( | 4): 311-316. |
[65] | Gori F, Santarsiero M. Devising genuine spatial correlation functions [J]. Optics Letters, 2008, 32(24): 3531-3533. |
[66] | Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations [J]. |
Optics Letters, 2011, 36(20): 4104-4106. | |
[67] | Tong Z, Korotkova O. Electromagnetic nonuniformly correlated beams [J]. Journal of the Optical Society of America A, 2012, |
20 | (24): 2154-2158. |
[68] | Sahin S,Korotkova O. Light sources generating far fields with tunable flat profiles [J]. Optics Letters, 2012, 37(14): 2970-2972. |
[69] | Korotkova O, Sahin S, Shchepakina E. Multi-Gaussian Schell-model beams [J]. Journal of the Optical Society of America A, |
20 | 12, 29(10): 2159-2164. |
[70] | Mei Z, Korotkova O, Shchepakina E. Electromagnetic multi-Gaussian Schell-model beams [J]. Journal of Optics, 2012, 15(2): |
02 | 5705. |
[71] | Mei Z, Korotkova O. Random sources generating ring-shaped beams [J]. Optics Letters, 2013, 38(2): 91-93. |
[72] | Chen Y, Liu L, Wang F, et al. Elliptical Laguerre-Gaussian correlated Schell-model beam [J]. Optics Express, 2014, 22(11): |
13 | 975-13987. |
[73] | Chen Y, Yu J, Yuan Y, et al. Theoretical and experimental studies of a rectangular Laguerre–Gaussian-correlated Schell-model |
beam [J]. Applied Physics B, 2016, 122(2): 31. | |
[74] | Chen Y, Gu J, Wang F, et al. Self-splitting properties of a Hermite-Gaussian correlated Schell-model beam [J]. Physical |
Review A, 2015, 91(1): 013823. | |
[75] | Chen Y, Wang F, Yu J, et al. Vector Hermite-Gaussian correlated Schell-model beam [J]. Optics Express, 2016, 24(14): |
15 | 232-15250. |
[76] | Mei Z, Korotkova O. Cosine-Gaussian Schell-model sources [J]. Optics Letters, 2013, 38(14): 2578-2580. |
[77] | Ma L, Ponomarenko S A. Optical coherence gratings and lattices [J]. Optics Letters, 2014, 39(23): 6656-6659. |
[78] | Ma L, Ponomarenko S A. Free-space propagation of optical coherence lattices and periodicity reciprocity [J]. Optics Express, |
20 | 15, 23(2): 1848-1856. |
[79] | Liang C, Mi C, Wang F, et al. Vector optical coherence lattices generating controllable far-field beam profiles [J]. Optics |
Express, 2017, 25(9): 9872-9885. | |
[80] | Chen R, Dong Y, Wang F, et al. Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere |
[J] | Applied Physics, 2013, B112(2): 247-259. |
[81] | Cang J, Fang X, Liu X. Propagation properties of multi-Gaussian Schell-model beams through ABCD optical systems and in |
atmospheric turbulence [J]. Optics & Laser Technology, 2013, 50: 65-70. | |
[82] | Du S, Yuan Y, Liang C, et al. Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere [J]. |
Optics & Laser Technology, 2013, 50: 14-19. | |
[83] | Yuan Y, Liu X, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere [J]. Optics |
Communications, 2013: 57-65. | |
[84] | Korotkova O, Avramovzamurovic S, Nelson C, et al. Scintillation reduction in multi-Gaussian Schell-model beams propagating |
in atmospheric turbulence [C]. Proceedings of SPIE, 2014, 9224: 92240M. | |
[85] | Sharifi M, Wu G, Luo B, et al. Beam wander of electromagnetic partially coherent flat-topped beam propagating in turbulent |
[86] | Korotkova O, Shchepakina E. Rectangular Multi-Gaussian Schell-Model beams in atmospheric turbulence [J]. Journal of |
Optics, 2014, 16(4): 045704. | |
[87] | Wu G, Zhou H, Zhao T, et al. Propagation properties of electromagnetic multi-Gaussian Schell model beams propagating |
through atmospheric turbulence [J]. Journal of the Korean Physical Society, 2014, 64(6): 826-831. | |
[88] | Mei Z, Shchepakina E, Korotkova O. Propagation of cosine-Gaussian-correlated Schell-model beams in atmospheric turbulence |
[J] | Optics Express, 2013, 21(15): 17512-17519. |
[89] | Mei Z, Korotkova O. Electromagnetic cosine-Gaussian Schell-model beams in free space and atmospheric turbulence [J]. |
Optics Express, 2013, 21(22): 27246-27259. | |
[90] | Xu H F, Zhang Z, Qu J, et al. Propagation factors of cosine-Gaussian-correlated Schell-model beams in non-Kolmogorov |
turbulence [J]. Optics Express, 2014, 22(19): 22479-22489. | |
[91] | Cang J, Xiu P, Liu X. Propagation of Laguerre–Gaussian and Bessel–Gaussian Schell-model beams through paraxial optical |
systems in turbulent atmosphere [J]. Optics & Laser Technology, 2013, 54: 35-41. | |
[92] | Wang H,Wang H, Xu Y, et al. Intensity and polarization properties of the partially coherent Laguerre–Gaussian vector beams |
with vortices propagating through turbulent atmosphere [J]. Optics & Laser Technology, 2014, 56: 1-6. | |
[93] | Chen R, Liu L, Zhu S, et al. Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere [J]. |
Optics Express, 2014, 22(2): 1871-1883. | |
[94] | Zhou Y, Yuan Y, Qu J, et al. Propagation properties of Laguerre-Gaussian correlated Schell-model beam in non-Kolmogorov |
turbulence [J]. Optics Express, 2016, 24(10): 10682-10693. | |
[95] | Zhang B, Huang H, Xie C, et al. Twisted rectangular Laguerre–Gaussian correlated sources in anisotropic turbulent atmosphere |
[J] | Optics Communications, 2020, 459: 125004. |
[96] | Song Z, Liu Z, Zhou K, et al. Propagation factors of multi-sinc Schell-model beams in non-Kolmogorov turbulence [J]. Optics |
Express, 2016, 24(2): 1804-1813. | |
[97] | Li J, Suo Q, Chen L. Analysis to beam quality of partially coherent flat-topped vortex beams propagating through atmospheric |
turbulence [J]. Optik International Journal for Light & Electron Optics, 2016, 127(23): 11342-11348. | |
[98] | Zhu J, Li X, Tang H, et al. Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and |
atmospheric turbulence [J]. Optics Express, 2017, 25(17): 20071-20086. | |
[99] | Liu X, Yu J, Cai Y, et al. Propagation of optical coherence lattices in the turbulent atmosphere [J]. Optics Letters, 2016, 41(18): |
41 | 82-4185. |
[100] | Yu J, Chen Y, Liu L, et al. Splitting and combining properties of an elegant Hermite-Gaussian correlated Schell-model beam |
in Kolmogorov and non-Kolmogorov turbulence [J]. Optics Express, 2015, 23(10): 13467-13481. | |
[101] | Yu J, Zhu X,Wang F, et al. Experimental study of reducing beam wander by modulating the coherence structure of structured |
light beams [J]. Optics Letters, 2019, 44(17): 4371-4374. | |
[102] | Yu J, Cai Y, Gbur G. Rectangular Hermite non-uniformly correlated beams and its propagation properties [J]. Optics Express, |
20 | 18, 26(21): 27894-27906. |
[103] | Yu J, Wang F, Liu L, et al. Propagation properties of Hermite non-uniformly correlated beams in turbulence [J]. Optics |
Express, 2018, 26(13): 16333-16343. |
[1] | 马慧敏 ∗ , 檀 磊 , 张京会 , 张鹏飞 , 宁孝梅 , 刘海秋 , 高彦伟 . 基于深度学习的合成孔径成像系统共相误差检测研究综述[J]. 量子电子学报, 2022, 39(6): 927-941. |
[2] | 李仕春, ∗, 黄祖鑫, 石东东, 辛文辉, 宋跃辉, 高 飞, 华灯鑫, ∗. 机载近红外偏振激光雷达探测过冷云研究[J]. 量子电子学报, 2021, 38(6): 872-879. |
[3] | 成 远, 张 振, 华灯鑫, 宫振峰, 梅 亮∗. NO2 差分吸收激光雷达技术研究进展[J]. 量子电子学报, 2021, 38(5): 580-592. |
[4] | 张钦伟, 曹连振∗, 刘 霞, 杨 阳, 赵加强, 李英德. 光子纠缠态在 non-Kolmogorov 大气湍流中纠缠退化的研究[J]. 量子电子学报, 2021, 38(4): 496-503. |
[5] | 冷坤, 杨云涛, 谭哲, 龚艳春, 武文远∗. 基于支持向量机的激光大气传输效能评估方法[J]. 量子电子学报, 2020, 37(5): 547-555. |
[6] | 杨勇, 程学武, 杨国韬, 薛向辉, 李发泉∗. 高层大气探测激光雷达研究进展[J]. 量子电子学报, 2020, 37(5): 566-579. |
[7] | 周正兰, 周源, 徐华锋, 屈军∗. 特殊关联部分相干光研究进展[J]. 量子电子学报, 2020, 37(5): 615-632. |
[8] | 储玉飞, 刘东, 王珍珠, 吴德成, 邓迁, 李路, 庄鹏, 王英俭, ∗. 多普勒测风激光雷达的基本原理与技术进展[J]. 量子电子学报, 2020, 37(5): 580-600. |
[9] | 习锋杰, 杨轶, 靖旭, 杜少军, 许晓军. 水平蒙气色差对光轴标定的影响[J]. 量子电子学报, 2020, 37(4): 386-391. |
[10] | 王英俭, ∗, 时东锋, . 大气对光学成像影响及校正技术[J]. 量子电子学报, 2020, 37(4): 409-417. |
[11] | 胡帅, ∗, 刘磊, ∗ 刘西川, 高太长, . 大气粒子多角度散射特性测量技术研究进展[J]. 量子电子学报, 2020, 37(4): 477-496. |
[12] | 黄印博, 曹振松, ∗, 卢兴吉, 黄俊, 刘强, 戴聪明, 黄宏华, 朱文越, , 饶瑞中, 王英俭, . 激光外差技术高分辨整层大气透过率测量 及水汽浓度反演研究[J]. 量子电子学报, 2020, 37(4): 497-505. |
[13] | 强希文, 宗飞, 翟胜伟, 封双连, 吴敏, 常金勇, 张志刚, 胡月宏. 大气湍流的实验模拟与测量[J]. 量子电子学报, 2020, 37(4): 506-512. |
[14] | 管忠银, 李 宝, 钱佳丽, 邓伦华, 徐淮良, . 氮气与甲烷混合气生成CN自由基研究[J]. 量子电子学报, 2020, 37(2): 144-149. |
[15] | 罗 杰, 侯再红, 靖 旭, 王振东, 安晏阳, 秦来安, 吴 毅, 仇陈祥, . 相干激光测风技术研究进展[J]. 量子电子学报, 2020, 37(2): 129-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||