量子电子学报 ›› 2021, Vol. 38 ›› Issue (2): 243-258.
杨帆1, 任国浩2
收稿日期:
2021-01-04
修回日期:
2021-01-22
出版日期:
2021-03-28
发布日期:
2021-03-29
作者简介:
杨帆( 1982 - ), 山东烟台人, 博士, 副教授, 硕士生导师, 主要从事新型辐射探测材料研发方面的研究。E-mail: fan@nankai.edu.cn
基金资助:
YANG Fan1, REN Guohao2
Received:
2021-01-04
Revised:
2021-01-22
Published:
2021-03-28
Online:
2021-03-29
摘要: 随着高重频辐射成像技术的发展和时间飞行技术在核医学成像领域的应用, 超快闪烁晶体的重要性愈 加凸显, 已经成为闪烁晶体研究领域的热点方向。目前获得应用的超快闪烁晶体主要有三类: 芯带价带发光闪 烁晶体, 直接带隙半导体, 发光有强热淬灭闪烁晶体。这些闪烁晶体具有小于3 ns 的闪烁衰减时间, 已经在高重 频辐射成像、高能物理实验以及核物理实验等领域获得应用。但是这些晶体光产额较低、能量分辨率较差, 有 些晶体闪烁发光还有慢分量, 这些缺点制约了它们在诸如正电子发射断层扫描等领域的应用。因此需要在发光 机制及晶体制备等方面进行创新, 以制备出满足新的应用需求的超快闪烁晶体。
中图分类号:
杨帆, 任国浩. 超快闪烁晶体研究进展[J]. 量子电子学报, 2021, 38(2): 243-258.
YANG Fan, REN Guohao. Development of ultrafast scintillation crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 243-258.
[1] | Van Loef E V D, Dorenbos P, Van Eijk C W E, et al. Scintillation properties of LaBr3:Ce3+ crystals: Fast, efficient and highenergy- |
resolution scintillators [J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers | |
Detectors and Associated Equipment, 2002, 486(1-2): 254-258. | |
[2] | Cherepy N J, Payne S A, Sturm B W, et al. Comparative Gamma spectroscopy with SrI2(Eu), GYGAG(Ce) and Bi-loaded |
plastic scintillators [C]. 2010 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2010: 1288-1291. | |
25 | 6 量子电子学报38 卷 |
[3] | Sturm B W, Cherepy N J, Drury O B, et al. Evaluation of large volume SrI2(Eu) scintillator detectors [C]. 2010 IEEE Nuclear |
Science Symposium Conference Record (NSS/MIC), 2010: 1607-1611. | |
[4] | Melcher C L, Schweitzer J S. Cerium-doped lutetium oxyorthosilicate: A fast, efficient new scintillator [J]. IEEE Transactions |
on Nuclear Science, 1992, 39(4): 502-505. | |
[5] | Cooke DW, McClellan K J, Bennett B L, et al. Crystal growth and optical characterization of cerium-doped Lu1:8Y0:2SiO5 [J]. |
Journal of Applied Physics, 2000, 88(12): 7360-7362. | |
[6] | Autrata R, Schauer P, Kuapil J, et al. A single crystal of YAG-new fast scintillator in SEM [J]. Journal of Physics E: Scientific |
Instruments, 1978, 11(7): 707-708. | |
[7] | Lempicki A, RandlesMH,Wisniewski D, et al. LuAlO3:Ce and other aluminate scintillators [J]. IEEE Transactions on Nuclear |
Science, 1995, 42(4): 280-284. | |
[8] | Lempicki A, Wojtowicz A J, Berman E. Fundamental limits of scintillator performance [J]. Nuclear Instruments and Methods |
in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 333(2): 304-311. | |
[9] | Valentine J D, Rooney B D, Li J. The light yield nonproportionality component of scintillator energy resolution [J]. IEEE |
Transactions on Nuclear Science, 1998, 45(3): 512-517. | |
[10] | Dorenbos P. Light output and energy resolution of Ce3+-doped scintillators [J]. Nuclear Instruments and Methods in Physics |
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486(1): 208-213. | |
[11] | Derenzo S E, Weber M J, Bourret-Courchesne E, et al. The quest for the ideal inorganic scintillator [J]. Nuclear Instruments |
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1): | |
11 | 1-117. |
[12] | Melcher C L. Perspectives on the future development of new scintillators [J]. Nuclear Instruments and Methods in Physics |
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1): 6-14. | |
[13] | Lecoq P. Development of new scintillators for medical applications [J]. Nuclear Instruments and Methods in Physics Research |
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 809: 130-139. | |
[14] | Hu C, Zhang L, Zhu R, et al. Ultrafast inorganic scintillators for gigahertz hard X-ray imaging [J]. IEEE Transactions on |
Nuclear Science, 2018, 65(8): 2097-2104. | |
[15] | Hu C, Zhang L, Zhu R Y, et al. Ultrafast inorganic scintillator-based front imager for gigahertz hard X-ray imaging [J]. Nuclear |
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, | |
20 | 19, 940: 223-229. |
[16] | Barnes C W, Funk D J, Hockaday M P, et al. The science of dynamic compression at the mesoscale and the Matter-Radiation |
Interactions in Extremes (MaRIE) project [C]. 18th Aps-Sccm and 24th Airapt, 2014, 500: 1-19. | |
[17] | Wang Z, Barnes C W, Guardincerri E, et al. GHz Hard X-ray imaging: Challenges in efficiency, timing and rate [R]. United |
States: N. p., 2013. Web. doi:10.2172/1079966. | |
[18] | Atanov N, Baranov V, Budagov J, et al. The Mu2e undoped CsI crystal calorimeter [J]. Journal of Instrumentation, 2018, |
13 | (2): 1420908. |
[19] | Atanov N, Baranov V, Budagov J, et al. Design and status of the Mu2e crystal calorimeter [J]. IEEE Transactions on Nuclear |
Science, 2018, 65(8): 2073-2080. | |
[20] | Rodnyi P A. Progress in fast scintillators [J]. Radiation Measurements, 2001, 33(5): 605-614. |
[21] | Laval M, Moszy´nski M, Allemand R, et al. Barium fluoride-inorganic scintillator for subnanosecond timing [J]. Nuclear |
Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 1983, | |
20 | 6(1): 169-176. |
[22] | Van Loef E V D, Dorenbos P, Van Eijk C W E, et al. Scintillation and spectroscopy of the pure and Ce3+-doped elpasolites: |
CS2LiYX6 (X=Cl, Br) [J]. Journal of Physics-Condensed Matter, 2002, 14(36): 8481-8496.[23] Lehmann W. Edge emission of n-type conducting ZnO and CdS [J]. Solid-State Electronics, 1966, 9(11): 1107-1110. | |
[24] | Kleim R, Raga F. Exciton luminescence in lead iodide lifetime, intensity and spectral position dependence on temperature [J]. |
Journal of Physics and Chemistry of Solids, 1969, 30(9): 2213-2223. | |
[25] | Van Eijk C W E. Cross-luminescence [J]. Journal of Luminescence, 1994, 60-61: 936-941. |
[26] | Farukhi M R, Swinehart C F. Barium fluoride as a Gamma ray and charged particle detector [J]. IEEE Transactions on Nuclear |
Science, 1971, 18(1): 200-204. | |
[27] | Zhu R Y, Yamammoto H. GEM TN-92-126 and CALT 68-1802 [R]. 1992. |
[28] | Mrenna S, Shevchenko S, Shi X R, et al. GEM TN-93-373 and CALT 68-1856 [R]. 1993. |
[29] | Zhu R Y. On quality requirements to the barium fluoride crystals [J]. Nuclear Instruments & Methods in Physics Research |
Section A-Accelerators Spectrometers Detectors and Associated Equipment, 1994, 340(3): 442-457. | |
[30] | Sobolev B P, Krivandina E A, Derenzo S E, et al. Suppression of BaF2 slow component of X-ray luminescence in non- |
Stoichiometric Ba0:9R0:1F2:1 crystals (R=rare earth element) [C]. Proceedings of The Material Research Society: Scintillator | |
and Phosphor Materials, 1994, 348: 277-283. | |
[31] | Yang F, Chen J, Zhang L, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity |
frontiers part II [J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 512-518. | |
[32] | Chen J, Yang F, Zhang L, et al. Slow scintillation suppression in yttrium doped BaF2 crystals [J]. IEEE Transactions on Nuclear |
Science, 2018, 65(8): 2147-2151. | |
[33] | Yang F, Chen J, Zhang L, et al. La- and La-/Ce-doped BaF2 crystals for future HEP experiments at the energy and intensity |
frontiers part I [J]. IEEE Transactions on Nuclear Science, 2019, 66(1): 506-511. | |
[34] | Glodo J, Loef E V, Hawrami R, et al. Selected properties of Cs2LiYCl6, Cs2LiLaC6, and Cs2LiLaBr6 scintillators [J]. IEEE |
Transactions on Nuclear Science, 2011, 58(1): 333-338. | |
[35] | Glodo J, Hawrami R, Shah K S. Development of Cs2LiYCl6 scintillator [J]. Journal of Crystal Growth, 2013, 379: 73-78. |
[36] | Combes C M, Dorenbos P, Hollander R W, et al. A thermal-neutron scintillator with n/gamma discrimination LiBaF3:Ce, |
Rb [J]. Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated | |
Equipment, 1998, 416(2-3): 364-370. | |
[37] | Tale I, Springis M, Kulis P, et al. Colour centres in LiBaF3 crystals [J]. Radiation Measurements, 1998, 29(3-4): 279-282. |
[38] | Gektin A, Shiran N, Voloshinovski A, et al. Scintillation in LiBaF3(Ce) crystals [J]. IEEE Transactions on Nuclear Science, |
19 | 98, 45(3): 505-507. |
[39] | Shiran N V, Gektin A V,Voloshinovski A S. Radiation induced processes in LiBaF3 based crystals [J]. Radiation Measurements, |
19 | 98, 29(3-4): 295-298. |
[40] | KnitelMJ, Dorenbos P, De Haas J T M, et al. LiBaF3, a thermal neutron scintillator with optimal n- |
discrimination [J]. Nuclear | |
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, | |
19 | 96, 374(2): 197-201. |
[41] | Bourret-Courchesne E D, Derenzo S E,WeberMJ. Development of ZnO:Ga as an ultra-fast scintillator [J]. Nuclear Instruments |
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 601(3): | |
35 | 8-363. |
[42] | Bourret-Courchesne E D, Derenzo S E, Weber M J. Semiconductor scintillators ZnO and PbI2: Co-doping studies [J]. Nuclear |
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, | |
20 | 07, 579(1): 1-5. [43] Derenzo S E, Weber M J, Klintenberg M K. Temperature dependence of the fast, near-band-edge scintillation from CuI, HgI2, |
PbI2, ZnO:Ga and CdS:In [J]. Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers | |
Detectors and Associated Equipment, 2002, 486(1-2): 214-219. | |
[44] | Moses W W, Choong W S, Derenzo S E, et al. Observation of fast scintillation of cryogenic PbI2 with VLPCs [J]. IEEE |
Transactions on Nuclear Science, 2004, 51(5): 2533-2536. | |
[45] | Belogurov S, Bressi G, Carugno G, et al. Properties of Yb-doped scintillators: YAG, YAP, LuAG [J]. Nuclear Instruments |
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 516(1): |
[1] | 廖杨芳, 谢泉 . 退火温度对蓝宝石衬底上Mg2Si薄膜质量和光学性质的影响[J]. 量子电子学报, 2023, 40(4): 492-499. |
[2] | 张若雅 , 朱巧芬 , 张 岩 . 可调谐太赫兹超材料吸波器研究进展[J]. 量子电子学报, 2023, 40(3): 301-318. |
[3] | 徐建伟 , 欧阳收剑 , 段守鑫 , 邹林儿 , 邓晓华 , 沈 云 , . 太赫兹平面环偶极子超材料传感器及地沟油检测[J]. 量子电子学报, 2023, 40(3): 333-339. |
[4] | 潘晓凯 , 姜梦杰, , 王 东, , 吕旭阳, , 蓝诗琪 , , 卫英东 , , 何 源, , 郭书广, , 陈平平 , 王 林∗ , 陈效双 , 陆 卫. 红外-太赫兹光电探测器应用及前沿变革趋势[J]. 量子电子学报, 2023, 40(2): 217-237. |
[5] | 童 叶 , 郑宇航 , 刘文鹏, , 丁守军 , ∗. Dy 3+ 和 Eu 3+ 共掺 NaY(MoO4)2 荧光粉 合成与发光性能研究[J]. 量子电子学报, 2023, 40(1): 32-39. |
[6] | 陈伟栋# , 卓琳青# , 朱文国 , 郑华丹 , 钟永春 , 唐洁媛, , 肖 毅 , 谢梦圆 , 张 军 , 余健辉∗ , 陈 哲, ∗. 光纤集成光电探测器研究进展[J]. 量子电子学报, 2022, 39(6): 942-954. |
[7] | 孟维利∗, 王晴晴, 邵静, 程宏伟, 宫昊. 石墨烯基杂化聚合物太阳能电池中光活性层 组成对器件性能的影响[J]. 量子电子学报, 2022, 39(4): 613-619. |
[8] | 廖杨芳, 谢泉∗. 退火温度和退火时间对不同衬底上 Mg2Si 薄膜结构的影响[J]. 量子电子学报, 2022, 39(4): 644-650. |
[9] | 徐民, 龚巧瑞, 李善明, 杭寅∗. 钛宝石激光晶体研究进展[J]. 量子电子学报, 2021, 38(2): 148-159. |
[10] | 程毛杰, 张会丽, 董昆鹏, 权聪, 胡伦珍, 韩志远, 孙敦陆, ∗. 直径3英寸钆镓石榴石晶体生长及性能研究[J]. 量子电子学报, 2021, 38(2): 160-166. |
[11] | 窦仁勤, 罗建乔, 刘文鹏, 高进云, 王小飞, 何異, 陈迎迎, 张庆礼. 采用XRF方法准确测定Yb:YAG晶体组分[J]. 量子电子学报, 2021, 38(2): 167-171. |
[12] | 韩卫民, 倪友保∗, 吴海信, 王振友, 黄昌保. 新型长波红外材料PbGa6Te10 的生长[J]. 量子电子学报, 2021, 38(2): 172-179. |
[13] | 李壮, 李春霄, 姚吉勇, ∗, 吴以成, . BaGa4Se7 和BaGa2GeSe6 晶体研究进展[J]. 量子电子学报, 2021, 38(2): 185-191. |
[14] | 王超, 赛青林∗, 齐红基∗. Ta5+、Nb5+ 掺杂-Ga2O3 单晶 光电性质研究进展[J]. 量子电子学报, 2021, 38(2): 219-227. |
[15] | 王强, 丁雨憧∗, 屈菁菁, 王璐, 董鸿林, 方承丽, 毛世平. 不同厚度Ce:GAGG闪烁晶体性能研究[J]. 量子电子学报, 2021, 38(2): 259-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||