量子电子学报 ›› 2022, Vol. 39 ›› Issue (1): 32-49.doi: 10.3969/j.issn.1007-5461.2022.01.002
• "轨道角动量:从经典光学到量子信息”专辑 • 上一篇 下一篇
周志远∗ , 史保森∗
收稿日期:
2021-08-26
修回日期:
2021-10-14
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
E-mail: zyzhouphy@ustc.edu.cn; drshi@ustc.edu.cn
E-mail:E-mail: zyzhouphy@ustc.edu.cn; drshi@ustc.edu.cn
作者简介:
周志远 ( 1989 - ), 博士, 副教授, 硕士生导师, 主要从事量子非线性光学和机构光场调控方面的研究。
E-mail: zyzhouphy@ustc.edu.cn
基金资助:
ZHOU Zhiyuan ∗ , SHI Baosen ∗
Received:
2021-08-26
Revised:
2021-10-14
Published:
2022-01-28
Online:
2022-01-28
摘要: 轨道角动量 (OAM) 是光的一个重要的自由度。由于携带 OAM 的光束具有特殊的强度相位分布以及 力学效应, 使得此类光束在高速光通信、测量、成像、光镊和量子信息中具有广泛的应用。关于 OAM 光束在 准相位匹配晶体 (QPM) 中的频率变换研究,一方面可以研究 OAM 光束参与非线性相互作用时与高斯光束不 同的物理机制; 另一方面, 非线性过程提供了多种有效的光场调控手段, 可以实现携带 OAM 光场不同自由度的 精细调控, 为满足不同的光学应用奠定基础。综述了近十年来 OAM 光束在 QPM 晶体中的非线性转换研究主 要进展, 具体包括: 非线性过程中 OAM 光束的守恒、传输、演化和干涉行为研究, 高效率的 OAM 激光和单光 子态频率转换研究, OAM 频率转换效率模式非依赖性研究, 矢量光束的频率转换研究, 以及无后向选择的高维 OAM 纠缠态的制备研究。最后讨论和展望了 OAM 在 QPM 晶体中频率转换方面的未来研究趋势。
中图分类号:
周志远∗, 史保森∗. 轨道角动量光束非线性转换研究进展[J]. 量子电子学报, 2022, 39(1): 32-49.
ZHOU Zhiyuan ∗ , SHI Baosen ∗. Recent progress on frequency conversion of orbital angular momentum carrying light[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 32-49.
[1] Franken P A, Hill A E, Peters C W, et al.Generation of optical harmonics [J]. [J].Physical Review Letters, 1961, 7:118- [2]Alnis J, Gustafsson U, Somesfalean G, et al.Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm [J]. Applied Physics Letters, 2000, 76:1234. [3]Wang Z, Zhang J, Yang F, et al.Stable operation of 4 mW nanoseconds radiation at 177.3 nm by Second Harmonic Generation in KBe2BO3F2 Crystals [J]. Optics Express 17(22):20021-20032. [4]Li Y, Zhou Z Y, Ding D S, et al.Low-power-pumped high-efficiency frequency doubling at 397.5 nm in a ring cavity [J]. Chinese Optics Letters, 2014, 12: 111901. [5]Peng Y, Wang W, Wei X, et al.High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN[J].Optics Letters, 2009, 34(19):2897-2899 [6]Kumar S C, and Ebrahim-Zadeh M.High-power,continuous-wave,mid-infrared optical parametric oscillator based on MgO:sPPLT[J].Optics Letters, 2011, 36(13):2578-2580 [7]Yang C, Liu S L, Zhou Z Y, et al.Extra-cavity-enhanced difference-frequency generation at 163 μm[J].Journal of the Optical Society of America B, 2020, 37(5):1367-1371 [8] Picqué? N and H?nsch T W.Frequency comb spectroscopy [J]. Nature Photonics 2019, 13:146-157. [9] Fortier T and Baumann E.20 years of developments in optical frequency comb technology and applications [J]. Communications Physics, (2019) 2:153. [10]Alfano R R.The Supercontinuum Laser Source [M]. New York: Springer, 2005. [11]Kwiat P G, Mattle K, Weinfurter H, et al.New high-intensity source of polarization-entangled photon pairs [J]. Physics Review Letters, 1995, 75(24), 4337–4341. [12]Li Y H, Zhou Z Y, Feng L T, et al.On-Chip Multiplexed Multiple Entanglement Sources in a Single Silicon Nanowire [J]. Physics Review Applied, 2017, 7: 064005. [13]Li Y, Zhou Z Y, Ding D S, et al.CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer [J]. Optics Express, 2015, 23:28792~28800. [14]Wang J, Paesani S, Ding Y, et al.Multidimensional quantum entanglement with large-scale integrated optics[J].Science, 2018, 360(6386):285-291 [15]Sala K, Kenney-Wallace G and Hall G.CW autocorrelation measurements of picosecond laser pulses [J] IEEE Journal of Quantum Electronics, 1980, 16( 9): 990-996. [16]Trebino R, DeLong K W, Fittinghoff D N, et al.Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating [J]. Review of Scientific Instruments, 1997, 68:3277. [17]Hoover E E, and Squier J A.Advances in multiphoton microscopy technology [J]. Nature Photonics, 2013, 7: 93–101. [18]Kumar P.Quantum frequency conversion[J]. Optics Letters, 1990, 15: 1476-1478. [19]Mancinelli M, Trenti A, Piccione S, et al.Mid-infrared coincidence measurements on twin photons at room temperature[J]. Nature Communications, 2017, 8:15184. [20]Zhou Z Y, Liu S L, Liu S K, et al.Superresolving Phase Measurement with Short-Wavelength NOON States by Quantum Frequency Up-Conversion [J]. Physics Review Applied, 2017, 7: 064025. [21]Forbes A, de Oliveira M and Dennis M R.Structured light [J]. Nature Photonics, 2021, 15: 253–262. [22]Allen L, Beijersbergen M W, Spreeuw R J C, et al.Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J].Physics Review A, 1992, 45(11):8185-8189 [23]Franke-Arnold S, Allen L, and Padgett M.Advances in optical angular momentum[J].Laser Photonics Review, 2008, 2(4):299-313 [24]Shen Y, Wang X, Xie Z, et al.Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities [J]. Light: Science & Applications, 2019, 8 :90. [25]Courtial J, and Padgett M J.Performance of a cylindrical lens mode converter for producing [J]. Optics Communications, 1999, 159: 13-18. [26]Maji S, Mandal A, And Brundavanam M M.Gouy phase-assisted topological transformation of vortex beams from fractional fork holograms[J].Optics letters, 2019, 44(9):2286-2289 [27] Marrucci L.The q-plate and its future [J]. Journal of Nanophotonics, 2013, 7: 078598. [28]Kotlyar V V, Almazov A A, Khonina S N, et al.Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate[J].Journal of the Optical Society of America A, 2005, 22(5):849-861 [29]Maurer C, Jesacher A, Bernet S, et al.What spatial light modulators can do for optical microscopy[J].Laser & Photonics Reviews, 2011, 5(1):81-101 [30]Cai X, Wang J, Strain M J, et al.Integrated Compact Optical Vortex Beam Emitters[J].Science, 2012, 338(6105):363-366 [31]Stav T, Faerman A, Maguid E, et al.Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials[J].Science, 2018, 361(6407):1101-1104 [32]Zhang Z, Qiao X, Midya B, et al.Tunable topological charge vortex microlaser[J].Science, 2020, 368(6492):760-763 [33]Ficklera R, Campbelld G, Buchlerd B, et al.Quantum entanglement of angular momentum states with quantum numbers up to 10,010[J].PNAS, 2016, 113(48):13642-13647 [34] Liu M, Zhu W, Huo P, et al.Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states [J]. Light: Science & Applications, 2021, 10:107. [35] Naidoo D, .Roux F S, Dudley A, et al. Controlled generation of higher-order Poincaré sphere beams from a laser [J]. Nature Photonics, 2016, 10: 327–332. [36]Vickers J, Burch M, Vyas R, et al.Phase and interference properties of optical vortex beams[J].Journal of the Optical Society of America A, 2008, 25(3):823-827 [37] Leach J, Courtial J, Skeldon K, et al.Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon [J]. Physics Review Letters, 2004, 92: 013601. [38]Leach J, Padgett M J, Barnett S M, et al.Measuring the orbital angular momentum of a single photon [J]. Physics Review Letters, 2202. 88: 257901. [39] Zhang W, Qi Q, Zhou J et al.Mimicking Faraday rotation to sort the orbital angular momentum of light [J]. Physics Review Letters, 2014, 112: 153601. [40]Zhou Y, Mirhosseini M, Fu D, et al.Sorting Photons by Radial Quantum Number [J]. Physics Review Letters, 2017, 119: 263602. [41] Wei S, Earl S K, Lin J, et al.Active sorting of orbital angular momentum states of light with a cascaded tunable resonator [J]. Light: Science & Applications, 2020, 9 :10. [42]Li Y, Zhou Z Y, Ding D S, et al.Non-destructive splitter of twisted light based on modes splitting in a ring cavity[J].Optics Express, 2016, 24(3):2166-2173 [43]Berkhout G C G, Lavery M P J, Courtial J, et al.Efficient sorting of orbital angular momentum states of light[J] Physics Review Letters, 2010, 105:153601. [44] Mirhosseini M, Malik M, Shi Z, et al.Efficient separation of the orbital angular momentum eigenstates of light [J]. Nature Communications, 2013, 4: 2781. [45] Wen Y, Chremmos I, Chen Y, et al.Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes [J]. Physical Review Letters, 2018, 120:193904. [46]Nicolas A, Veissier L, Giacobino E, Maxein D, et al.Quantum state tomography of orbital angular momentum photonic qubits via a projection-based technique [J]. New Journal Physics, 2015, 17: 033037. [47]Schulze C, Dudley A, Brüning R, et al.Measurement of the orbital angular momentum density of Bessel beams by projection into a Laguerre–Gaussian basis[J].Applied Optics, 2014, 53(26):5924-5933 [48] Suprano A, Zia D, Polino E, et al.Enhanced detection techniques of orbital angular momentum states in the classical and quantum regimes [J]. New Journal Physics, 2021, 23 : 073014. [49] R.W. Boyd, Nonlinear Optics, Third Edition, New York (2007). [50]Armstrong J A, Bloembergen N, Ducuing J, et al.Interactions between light waves in a nonlinear dielectric [J]. Physics Review, 1962, 127:1918. [51] Fejer M M, Magel G A, Jundt D H, et al.Quasi-phase-matched second harmonic generation: tuning and tolerances [J]. IEEE Journal Quantum Electronics, 1992, 28: 2631. [52]Courtial J, Dholakia K, Allen L, et al.Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes[J].Physical Review A, 1997, 56(5):4193-4196 [53] Shao G H, Wu Z J, Chen J H, et al.Nonlinear frequency conversion of fields with orbital angular momentum using quasi-phase matching, Physics Review A, 2013, 88: 063827. [54] Zhou Z Y, Ding D S, Jiang Y K, et al.Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals [J]. Optics Express, 2014, 22: 20298~20310. [55]Li Y, Zhou Z Y, Ding D S, et al.Sum frequency generation with two orbital angular momentum carrying laser beams [J]. Journal Optical Society America B, 2015, 32: 407~411. [56] Li Y, Zhou Z Y, Ding D S, et al.Dynamic mode evolution and phase transition of twisted light in nonlinear process [J]. Journal of Modern Optics, 2016, 63: 2271~2278. [57]Ge Z, Zhou Z Y, Li Y, et al.Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals[J].Optics Letters, 2021, 46(2):158-161 [58]Fang X, Yang G, Wei D, et al.Coupled orbital angular momentum conversions in a quasi-periodically poled LiTaO3 crystal[J].Optics Letters, 2016, 41(6):1169-1172 [59]Wu Y, Ni R, Xu Z, et al.Tunable third harmonic generation of vortex beams in an optical superlattice[J].Optics Express, 2017, 25(25):30820-30826 [60]Fang X, Kuang Z, Chen P, et al.Examining second-harmonic generation of high-order Laguerre–Gaussian modes through a single cylindrical lens[J].Optics Letters, 2017, 42(21):4387-4390 [61]Tang R, Li X, Wu W, et al.High efficiency frequency upconversion of photons carrying orbital angular momentum for a quantum information interface[J].Optics Express, 2015, 23(8):9796-9802 [62]Yang C, Zhou Z Y, Li Y, et al.Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop[J].Optics Letters, 2019, 44(2):219-222 [63]Li H, Liu H, and Chen X.Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer [J]. Applied Physics Letters, 2019, 114: 241901. [64] Wu H J, Zhou Z Y, Gao W, et al.Dynamic tomography of the spin-orbit coupling in nonlinear optics [J]. Physical Review A, 2019, 99: 023830. [65]Wu H J, Zhao B, Rosales-Guzmán C, et al.Spatial-Polarization-Independent Parametric Up-Conversion of Vectorially Structured Light [J]. Physical Review Applied, 2020, 13: 064041. [66]Ren Z C, Lou Y C, Cheng Z M, et al.Optical frequency conversion of light with maintaining polarization and orbital angular momentum [J]. Optics Letters, 46(10):2300-2303. [67]Liu H, Li H, Zheng Y, et al.Nonlinear frequency conversion and manipulation of vector beams[J].Optics Letters, 2018, 43(24):5981-5984 [68] Li H, Liu H, Yang Y, et al.Ultraviolet waveband vector beams generation assisted by the nonlinear frequency conversion [J]. Applied Physics Letters, 2021, 119: 011104. [69]Li H, Liu H, and Chen X.Dual waveband generator of perfect vector beams[J].Photonics Research, 2019, 7(11):1340-1344 [70]Zhou Z Y, Li Y, Ding D S, et al.Highly efficient second harmonic generation of a light carrying orbital angular momentum in an external cavity [J]. Optics Express, 2014, 22: 23673~23678. [71] Zhou Z Y, Li Y, Ding D S, et al.Orbital angular momentum photonic quantum interface [J]. Light: Science & Applications, 2016, 5: e16019. [72] Zhou Z Y, Liu S L, Li Y, et al.Orbital Angular Momentum-Entanglement Frequency Transducer [J]. Physics Review Letters, 2016, 117: 103601. [73]Liu S L, Liu S K, Li Y H, et al.Coherent frequency bridge between visible and telecommunications band for vortex light [J]. Optics Express, 2017, 25: 24290~24298. [74]Li Y, Zhou Z Y, Liu S L, et al.Frequency doubling of twisted light independent of the integer topological charge[J].OSA Continuum, 2019, 2(2):470-477 [75] Liu S, Yang C, Xu Z, et al.High-dimensional quantum frequency converter [J]. Physics Review A, 2020, 101:012339. [76]Dada A C, Leach J, Buller G S, et al.Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities [J]. Nature Physics, 2011, 7: 677. [77]Malik M, Erhard M, Huber M, et al.Multi-photon entanglement in high dimensions [J]. Nature Photonics, 2016, 10: 248. [78]Yao A M.Angular momentum decomposition of entangled photons with an arbitrary pump [J]. New Journal of Physics, 2011, 13: 053048. [79]Zhou Z Y, Li Y, Ding D S, et al.Classical to quantum optical network link for orbital angular momentum-carrying light[J].Optics Express, 2015, 23(14):18435-18444 [80]Liu S, Zhou Z, Liu S, et al.Coherent manipulation of a three-dimensional maximally entangled state [J]. Physical Review A, 2018, 98: 062316. [81]Kovlakov E V, Straupe S S, and Kulik S P.Quantum state engineering with twisted photons via adaptive shaping of the pump beam [J]. Physical Review A, 2018, 98, 060301(R). [82]Liu S, Zhang Y, Yang C, et al.Increasing two-photon entangled dimensions by shaping input-beam profiles [J]. Physical Review A, 2020, 101: 052324. [83]Chong A, Wan C, Chen J, et al.Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum [J]. Nature Photonics, 2020, 14:350–354. [84]Gui G, Brooks N J, Kapteyn H C, et al.Second-harmonic generation and the conservation of spatiotemporal orbital angular momentum of light [J]. Nature Photonics, 2021, 15: 608–613. [85]Tang Y, Li K, Zhang X, et al.Harmonic spin–orbit angular momentum cascade in nonlinear optical crystals [J]. Nature Photonics, 2020, 14: 658–662. [86]Chen P, Ma L L, Duan W, et al.Digitalizing Self-Assembled Chiral Superstructures for Optical Vortex Processing [J]. Advanced Materials, 2018, 30:1705865. [87]Qiu X, Li F, Liu H, et al.Optical vortex copier and regenerator in the Fourier domain[J].Photonics Research, 2018, 6(6):641-646 [88]Wei D, Guo J, Fang X, et al.Multiple generations of high-order orbital angular momentum modes through cascaded third-harmonic generation in a 2D nonlinear photonic crystal[J].Optics Express, 2017, 25(10):11556-11563 [89]Wei D, Wang C, Wang H, et al.Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal [J]. Nature Photonics, 2018, 12: 596–600. [90] Wei D, Wang C, Xu X, et al.Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals [J]. Nature Communications, 2019, 10: 4193. [91] Chen P, Wang C, Wei D, et al.Quasi-phase-matching-division multiplexing holography in a three-dimensional nonlinear photonic crystal [J]. Light Science Applications, 2021, 10: 146. [92]Chen R, Ni R, Wu Y, et al.Phase-Matching Controlled Orbital Angular Momentum Conversion in Periodically Poled Crystals [J]. Physical Review Letters, 2020, 125:143901. [93]Hu X, Zhang Y, and Zhu S.Nonlinear Beam Shaping in Domain Engineered Ferroelectric Crystals [J]. Advanced Materials, 2020, 32: 1903775. [94]Sain B, Meier C, Zentgraf T.Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review[J].Advanced Photonics, 2019, 1(2):024002- [95]Rego L, Dorney K M, Brooks N J, et al.Generation of extreme-ultraviolet beams with time-varying orbital angular momentum [J]. Science, 2019, 364: 1253. [96]Gauthier D, Rebernik Ribic P, Adhikary G, et al.Tunable orbital angular momentum in high-harmonic generation [J]. Nature Communications, 2017, 8:1497. [97]Niu S, Wang S, Ababaike M, et al.Tunable near- and mid-infrared (1.36–1.63 μm and 3.07–4.81 μm) optical vortex laser source [J]. Laser Physics Letters, 2020, 17: 045402. [98]Aadhi A, Sharma V, Singh R P, et al.Continuous-wave,singly resonant parametric oscillator-based mid-infrared optical vortex source[J].Optics Letters, 2017, 42(18):3674-3677 [99]Araki S, Ando K, Miyamoto K, et al.Ultra-widely tunable mid-infrared (6–18 μm) optical vortex source[J].Applied Optics, 2018, 57(4):620-624 |
[1] | 陈骊颖, 黄堃, 王琪, 闫仕农 . 基于金刚石NV色心集成振动检测模块的设计[J]. 量子电子学报, 2023, 40(4): 500-509. |
[2] | 摆海龙, 白金海, 胡栋, 王宇. 用于原子干涉重力仪的小型频率合成器设计与实现[J]. 量子电子学报, 2023, 40(4): 510-518. |
[3] | 李嵩松. 玻色-爱因斯坦凝聚体中三体和四体相互作用对自旋压缩和量子纠缠的影响研究[J]. 量子电子学报, 2023, 40(4): 519-527. |
[4] | 李艳, . 一维强相互作用的玻色-费米混合气体 关联特性研究[J]. 量子电子学报, 2023, 40(4): 528-540. |
[5] | 王晟, 方晓明, 林昱, 张天兵, 冯宝, 余杨, 王乐 . 四强度诱骗态相位匹配量子密钥分发协议[J]. 量子电子学报, 2023, 40(4): 541-545. |
[6] | 孙一石, 孙弋 . 基于BP 神经网络的经典-量子信号共纤同传系统参数预测[J]. 量子电子学报, 2023, 40(4): 546-559. |
[7] | 戚志明, 梁文耀 . 光束偏振对全息干涉制作复式光子晶体的影响研究[J]. 量子电子学报, 2023, 40(4): 447-457. |
[8] | 何业锋, 李丽娜∗, 白 倩, 陈思昊, 强雨薇 . 标记单光子源下探测器死时间的量子密钥分配[J]. 量子电子学报, 2023, 40(1): 112-119. |
[9] | 谈志杰 杨海瑞 喻虹 韩申生. X光强度关联衍射成像技术研究进展[J]. 量子电子学报, 2022, 39(6): 851-862. |
[10] | 林惠祖 刘伟涛 孙帅 杜隆坤 常宸 李月刚. 关联成像算法研究进展[J]. 量子电子学报, 2022, 39(6): 863-879. |
[11] | 王孝艳, 王志远, 陈子阳, 蒲继雄∗. 基于深度学习技术从散斑场中识别 多涡旋结构的轨道角动量[J]. 量子电子学报, 2022, 39(6): 955-961. |
[12] | 李能菲 孙宇松 黄见. 余弦编码复用高空间分辨率关联成像研究[J]. 量子电子学报, 2022, 39(6): 973-982. |
[13] | 陈荣泉∗, 陈源福, 王 清, 吴志钢. 离轴多涡旋-高斯光束在负折射率 介质中的传输特性[J]. 量子电子学报, 2022, 39(5): 795-805. |
[14] | 戴 攀, 庞志广, 李 剑, 王 琴∗. 基于纠缠源的非线性贝尔不等式研究[J]. 量子电子学报, 2022, 39(5): 761-767. |
[15] | 周贤韬, 江英华∗, 郭晨飞, 赵 宁, 刘 彪. 基于 GHZ 态粒子和单光子混合的 量子安全直接通信协议[J]. 量子电子学报, 2022, 39(5): 768-775. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||