[1]LIU Y, ZHAO Q, LI M-H, et al. Device-independent quantum random-number generation[J]. Nature, 2018, 562(7728): 548-551.[2]PAN J W, BOUWMEESTER D, WEINFURTER H, et al. Experimental entanglement swapping: entangling photons that never interacted[J]. Physical Review Letters, 1998, 80(18):3891.[3]EKERT A K. Quantum cryptography based on Bell’s theorem[J]. Physical Review Letters, 1991, 67(6):661-663.[4]ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779):505-510. [5]PIRONIO S, ACIN A, MASSAR S, et al. Random numbers certified by Bell's theorem[J]. Nature, 2010, 463(7291):1021-1024.[6]WISEMAN H M, JONES S J, DOHERTY A C. Steering, entanglement, non-locality, and the Einstein-Podolsky-Rosen paradox[J]. Physical Review Letters, 2007, 98(14):140402.[7]SCHNEELOCH J, BROADBENT J C,WALBORN P S, et al. Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations[J]. Physical Review A, 2013, 87(6):062103. [8]BUHRMAN H, MASSAR S. Causality and Tsirelson's bounds[J]. Physical Review A, 2005,72(5):052103.[9]WEHNER S. Tsirelson bounds for generalized clauser-horne-shimony-holt inequalities[J]. Physical Review A, 2006, 73(2):022110.[10]NAVASCUéS M, PIRONIO S, ACíN A. A convergent hierarchy of semi-definite programs characterizing the set of quantum correlations[J]. New Journal of Physics , 2008, 10(7):073013.[11]BANCAL J-D, BRANCIARD C, BRUNNER N, et al. A framework for the study of symmetric full-correlation Bell-like inequalities[J]. Journal of Physics A,2012,45(12):125301.[12]GOH K T, K AN I EWSK I J , WOLFE K , et al . Geometry of the set of quantum correlations[J]. Physical Review A, 2018, 97(2):022104 .[13]VICENTE J D. Simple conditions constraining the set of quantum correlations [J]. Physical Review A, 2015, 92(03):032103.[14]POPESCU S, ROHRLICH D.Quantum non-locality as an axiom[J]. Foundation of Physics, 1994,24(3):379-385 .[15]LINDEN N, POPESCU S, SHORT J A, et al. Quantum non-locality and beyond:limits from non-local computation[J]. Physical Review Letters, 2007, 99(18):180502 .[16]PAW?OWSKI M, PATEREK T, KASZLIKOWSKI D, et al. Information causality as a physical principle[J]. Nature, 2009, 461(11):1101-1104 .[17]NAVASCUéS M , WUNDERLICH H. A glance beyond the quantum model[J]. Processing of the Royal Society A. 2009, 466(8):881.[18]OPPENHEIM J, WEHNER S. The uncertainty principle determines the non-locality of quantum mechanics[J]. Science, 2010, 330(6007):1072-1074 .[19]FRITZ T, SAINZ A B, AUGUSIAK R, et al. Local orthogonality as a multipartite principle for quantum correlations[J]. Nature Communications, 2013, 4(22):2263.[20]VAN DAM W. Implausible consequences of super-strong non-locality[J]. Nature Computing, 2013, 12:9 -12.[21]GUO H, LI Z-Y, PENG X. Quantum cryptography[M]. National Defense Industry Press, 2016.郭宏,李政宇,彭翔. 量子密码[M]. 国防工业出版社, 2016.[22]CIREL B S'SON.Quantum generalizations of Bell’s inequality[J]. Letters in Mathematical Physics, 1980, 4:93 .[23]BELL J S. On the Einstein podolsk rosen paradox[M]. John S Bell On The Foundations Of Quantum Mechanics. 2001:7-12.[24]PANERU D. Experimental tests of multiplicative bell inequalities[J]. https://arxiv.org/abs/2009.03930.[25]TE’ENI A, PELED B Y, COHEN E, et al. Multiplicative bell inequalities[J]. Physical Review A, 2019 ,99(4):040102. |