[1] Pittman TB, Shih YH, Strekalov D V, et al. Optical Imaging by Means of Two-Photon Quantum Entanglement[J]. Physical Review A, 1995, 52(5): R3429–R3432. [2] Bennink RS, Bentley SJ, Boyd RW. ‘Two-Photon’ Coincidence Imaging with a Classical Source[J]. Phys Rev Lett, 2002, 89(11): 113601. [3] Garbe U, Ahuja Y, Ibrahim R, et al. Industrial Application Experiments on the Neutron Imaging Instrument DINGO[J]. Physics Procedia, 2017, 88(September 2016): 13–18. [4] Gatti A, Brambilla E, Bache M, et al. Ghost Imaging with Thermal Light: Comparing Entanglement and ClassicalCorrelation[J]. Physical Review Letters, 2004, 93(9): 093602. [5] Zhang D, Zhai YH, Wu LA, et al. Correlated Two-Photon Imaging with True Thermal Llight[J]. Optics Letters, 2005, 30(18): 2354–2356. [6] Tian N, Guo Q, Wang A, et al. Fluorescence Ghost Imaging with Pseudothermal Light[J]. Optics Letters, 2011, 36(16): 3302–3304. [7] Martienssen W, Spiller E. Coherence and Fluctuations in Light Beams[J]. American Journal of Physics, 1964, 32(12): 919–926. [8] Shih Y. The Physics of Ghost Imaging: Nonlocal Interference or Local Intensity Fluctuation Correlation?[J]. Quantum Information Processing, 2012, 11(4): 995–1001. [9] Strekalov D V., Sergienko A V., Klyshko DN, et al. Observation of Two-Photon “Ghost” Interference and Diffraction[J]. Physical Review Letters, 1995, 74(18): 3600–3603. [10] Bo Z, Gong W, Han S. Phase-Retrieval Ghost Imaging of Complex-Valued Objects[J]. Physical Review A - Atomic, Molecular, and Optical Physics, 2010, 82(2): 1–4. [11] Khakimov RI, Henson BM, Shin DK, et al. Ghost Imaging with Atoms[J]. Nature, 2016, 540(7631): 100–103. [12] Kingston AM, Myers GR, Pelliccia D, et al. Neutron Ghost Imaging[J]. Physical Review A, 2020, 101(5): 053844. [13] Li S, Cropp F, Kabra K, et al. Electron Ghost Imaging[J]. Physical Review Letters, 2018, 121(11): 114801. [14] Chen BK, Sidorenko P, Lahav O, et al. Multiplexed Single-Shot Ptychography[J]. Optics Letters, 2018, 43(21): 5379. [15] Miao J, Charalambous P, Kirz J, et al. Extending the Methodology of X-Ray Crystallography to Allow Imaging of Micrometre-Sized Non-Crystalline Specimens[J]. Nature, 1999, 400(6742): 342–344. [16] Xu R, Jiang H, Song C, et al. Single-Shot Three-Dimensional Structure Determination of Nanocrystals with Femtosecond X-Ray Free-Electron Laser Pulses[J]. Nature Communications, 2014, 5(May): 1–9. [17] Ekeberg T, Svenda M, Abergel C, et al. Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser[J]. Physical Review Letters, 2015, 114(9): 1–6. [18] He S, Shen X, Wang H, et al. Ghost Diffraction without a Beamsplitter[J]. Applied Physics Letters, 2010, 96(18): 181108. [19] Gatti A, Magatti D, Bache M, et al. High-Resolution Ghost Image and Ghost Diffraction Experiments with Incoherent Pseudo-Thermal Light[J]. Quantum Communications and Quantum Imaging III, 2005, 5893(August): 58930D. [20] Cheng J, Han S. Incoherent Coincidence Imaging and Its Applicability in X-Ray Diffraction[J]. Physical Review Letters, 2004, 92(9): 093903. [21] Zhang M, Wei Q, Shen X, et al. Lensless Fourier-Transform Ghost Imaging with Classical Incoherent Light[J]. Physical Review A, 2007, 75(2): 441–445. [22] Yu H, Lu R, Han S, et al. Fourier-Transform Ghost Imaging with Hard X Rays[J]. Physical Review Letters, 2016, 117(11): 113901. [23] Shapiro JH. Computational Ghost Imaging[C]//Conference on Lasers and Electro-Optics/International Quantum Electronics Conference. Washington, D.C.: OSA, 2009: IThK7. [24] Mait JN, Euliss GW, Athale RA. Computational Imaging[J]. Advances in Optics and Photonics, 2018, 10(2): 409–483. [25] Katz O, Bromberg Y, Silberberg Y. Compressive Ghost Imaging[J]. Applied Physics Letters, 2009, 95(13): 131110. [26] Zhu R, Yu H, Lu R, et al. Spatial Multiplexing Reconstruction for Fourier-Transform Ghost Imaging via Sparsity Constraints[J]. Optics Express, 2018, 26(3): 2181. [27] Liu P, Zhang H, Zhang K, et al. Multi-Level Wavelet-CNN for Image Restoration[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. . [28] Lyu M, Wang W, Wang HH, et al. Deep-Learning-Based Ghost Imaging[J]. Scientific Reports, 2017, 7(1): 17865. [29] Sinha A, Lee J, Li S, et al. Lensless Computational Imaging through Deep Learning[J]. Optica, 2017, 4(9): 1117. [30] Zhao Xin, Yu Hong, Lu Ronghua, et al. Research on Pseudo-Thermal Source of X-Ray Fourier-Transform Ghost Imaging[J]. Acta Optica Sinica, 2017, 37(5): 0511001(in chinese). 赵 鑫,喻 虹,陆荣华,等. X光傅里叶变换关联成像赝热光源研究[J]. 光学学报,2017, 37(5): 0511001. [31] Wang H, Han S. Coherent Ghost Imaging Based on Sparsity Constraint without Phase-Sensitive Detection[J]. EPL (Europhysics Letters), 2012, 98(2): 24003. [32] Tan Z, Yu H, Lu R, et al. Non-Locally Coded Fourier-Transform Ghost Imaging[J]. Optics Express, 2019, 27(3): 2937. [33] Candès EJ, Strohmer T, Voroninski V, et al. PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming[J]. Communications on Pure and Applied Mathematics, 2013, 66(8): 1241–1274. [34] Candes EJ, Eldar YC, Strohmer T, et al. Phase Retrieval via Matrix Completion[J]. SIAM Review, 2015, 57(2): 225–251. [35] Goldstein T, Studer C. PhaseMax: Convex Phase Retrieval via Basis Pursuit[J]. IEEE Transactions on Information Theory, 2018, 64(4): 2675–2689. [36] Wei Z, Chen W, Yin T, et al. Robust Phase Retrieval of Complex-Valued Object in Phase Modulation by Hybrid Wirtinger Flow Method[J]. Optical Engineering, 2017, 56(09): 1. [37] Chen Y, Candès EJ. Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems[J]. Communications on Pure and Applied Mathematics, 2017, 70(5): 822–883. [38] Candes EJ, Li X, Soltanolkotabi M. Phase Retrieval via Wirtinger Flow: Theory and Algorithms[J]. IEEE Transactions on Information Theory, 2015, 61(4): 1985–2007. [39] Candès EJ, Li X, Soltanolkotabi M, et al. Phase Retrieval from Coded Diffraction Patterns[J]. Applied and Computational Harmonic Analysis, 2015, 39(2): 277–299. [40] Zhang F, Chen B, Morrison GR, et al. Phase Retrieval by Coherent Modulation Imaging[J]. Nature Communications, 2016, 7(1): 13367. [41] Liu Z, Tan S, Wu J, et al. Spectral Camera Based on Ghost Imaging via Sparsity Constraints[J]. Scientific Reports, 2016, 6(1): 25718. [42] Yu W-K, Li M-F, Yao X-R, et al. Adaptive Compressive Ghost Imaging Based on Wavelet Trees and Sparse Representation[J]. Optics Express, 2014, 22(6): 7133. [43] Gong W, Zhao C, Yu H, et al. Three-Dimensional Ghost Imaging Lidar via Sparsity Constraint[J]. Scientific Reports 2016 6:1, 2016, 6(1): 1–6. [44] Xi M, Chen H, Yuan Y, et al. Bi-Frequency 3D Ghost Imaging with Haar Wavelet Transform[J]. Optics Express, 2019, 27(22): 32349. [45] Huang H, Zhou C, Tian T, et al. High-Quality Compressive Ghost Imaging[J]. Optics Communications, 2018, 412(December 2019): 60–65. [46] Yi C, Zhengdong C, Xiang F, et al. Compressive Sensing Ghost Imaging Based on Image Gradient[J]. Optik, 2019, 182: 1021–1029. [47] Liu D, Li L, Chen H, et al. Complementary Normalized Compressive Ghost Imaging with Entangled Photons[J]. IEEE Photonics Journal, 2018, 10(2). [48] Fienup JR. Phase Retrieval Algorithms: A Comparison[J]. Applied Optics, 1982, 21(15): 2758–2769. [49] Quan TM, Nguyen-Duc T, Jeong WK. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss[J]. IEEE Transactions on Medical Imaging, 2018, 37(6): 1488–1497. [50] Horisaki R, Takagi R, Tanida J. Learning-Based Imaging through Scattering Media[J]. Optics Express, 2016, 24(13): 13738. [51] Sinha A, Barbastathis G, Lee J, et al. Imaging through Glass Diffusers Using Densely Connected Convolutional Networks[J]. Optica, Vol. 5, Issue 7, Pp. 803-813, 2018, 5(7): 803–813. [52] Li Y, Xue Y, Tian L. Deep Speckle Correlation: A Deep Learning Approach toward Scalable Imaging through Scattering Media[J]. Optica, 2018, 5(10): 1181. [53] Ledig C, Theis L, Huszar F, et al. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 105–114. [54] Dong C, Loy CC, He K, et al. Learning a Deep Convolutional Network for Image Super-Resolution[M]//Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer Verlag, 2014: 184–199. [55] Nehme E, Weiss LE, Michaeli T, et al. Deep-STORM: Super-Resolution Single-Molecule Microscopy by Deep Learning[J]. Optica, 2018, 5(4): 458. [56] Nguyen T, Xue Y, Li Y, et al. Deep Learning Approach for Fourier Ptychography Microscopy[J]. Optics Express, 2018, 26(20): 26470. [57] Khoshaman A, Vinci W, Denis B, et al. Quantum Variational Autoencoder[J]. Quantum Science and Technology, 2018, 4(1): 014001. [58] Cemgil T. The Autoencoding Variational Autoencoder[J]. Advances in Neural Information Processing Systems, 2020. [59] Pu Y, Gan Z, Henao R, et al. Variational Autoencoder for Deep Learning of Images, Labels and Captions[J]. Advances in Neural Information Processing Systems, 2016, 29. [60] Hou X, Shen L, Sun K, et al. Deep Feature Consistent Variational Autoencoder[C]//2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE, 2017: 1133–1141. [61] Zhu R, Yu H, Tan Z, et al. Ghost Imaging Based on Y-Net: A Dynamic Coding and Decoding Approach[J]. Optics Express, 2020, 28(12): 17556. [62] Shechtman Y, Sahl SJ, Backer AS, et al. Optimal Point Spread Function Design for 3D Imaging[J]. Physical Review Letters, 2014, 113(3): 133902. [63] Sengupta SK, Kay SM. Fundamentals of Statistical Signal Processing: Estimation Theory[J]. Technometrics, 1995, 37(4): 465. [64] Hu C, Zhu R, Yu H, et al. Correspondence Fourier-Transform Ghost Imaging[J]. Physical Review A, 2021, 103(4): 43717. [65] Oppel S, Büttner T, Kok P, et al. Superresolving Multiphoton Interferences with Independent Light Sources[J]. Physical Review Letters, 2012, 109(23): 3–6. [66] Classen A, Waldmann F, Giebel S, et al. Superresolving Imaging of Arbitrary One-Dimensional Arrays of Thermal Light Sources Using Multiphoton Interference[J]. Physical Review Letters, 2016, 117(25): 1–7. [67] Sataloff RT, Johns MM, Kost KM. Quantum Imaging with Incoherent Photons[J]. Physical Review Letters, 2007, 99. [68] Oberthür D. Biological Single-Particle Imaging Using XFELs-towards the next Resolution Revolution[J]. IUCrJ, 2018, 5: 663–666. [69] Barty A. Single Molecule Imaging Using X-Ray Free Electron Lasers[J]. Current Opinion in Structural Biology, 2016, 40: 186–194. [70] Schneider R, Mehringer T, Mercurio G, et al. Quantum Imaging with Incoherently Scattered Light from a Free-Electron Laser[J]. Nature Physics, 2018, 14(2): 126–129. [71] Li Z, Medvedev N, Chapman HN, et al. Radiation Damage Free Ghost Diffraction with Atomic Resolution[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51(2). [72] Tamasaku K, Sawada K, Nishibori E, et al. Visualizing the Local Optical Response to Extreme-Ultraviolet Radiation with a Resolution of λ/380[J]. Nature Physics, 2011, 7(9): 705–708. [73] Glover TE, Fritz DM, Cammarata M, et al. X-Ray and Optical Wave Mixing[J]. Nature, 2012, 488(7413): 603–608. [74] Shwartz S, Coffee RN, Feldkamp JM, et al. X-Ray Parametric down-Conversion in the Langevin Regime[J]. Physical Review Letters, 2012, 109(1): 1–5. [75] Lee K, Park Y. Exploiting the Speckle-Correlation Scattering Matrix for a Compact Reference-Free Holographic Image Sensor[J]. Nature Communications, 2016, 7(1): 1–7. [76] Naik DN, Singh RK, Ezawa T, et al. Photon Correlation Holography[J]. Optics Express, 2011, 19(2): 1408. [77] Vinu R V., Chen Z, Singh RK, et al. Ghost Diffraction Holographic Microscopy[J]. Optica, 2020, 7(12): 1697. [78] Zhang Z, Ma X, Zhong J. Single-Pixel Imaging by Means of Fourier Spectrum Acquisition[J]. Nature Communications, 2015, 6(1): 6225. [79] Mahdi Khamoushi SM, Nosrati Y, Tavassoli SH. Sinusoidal Ghost Imaging[J]. Optics Letters, 2015, 40(15): 3452. [80] Lane TJ, Ratner D. What Are the Advantages of Ghost Imaging? Multiplexing for x-Ray and Electron Imaging[J]. Optics Express, 2020, 28(5): 5898.
|