量子电子学报 ›› 2023, Vol. 40 ›› Issue (1): 48-55.doi: 10.3969/j.issn.1007-5461.2023.01.005

• 图像与信息处理 • 上一篇    下一篇

随机散斑图正交优化计算鬼成像

郭 辉∗ , 叶知秋   

  1. ( 阜阳师范大学信息工程学院, 安徽 阜阳 236037 )
  • 收稿日期:2021-03-29 修回日期:2021-05-10 出版日期:2023-01-28 发布日期:2023-01-28
  • 通讯作者: E-mail: fsyghyz@163.com E-mail: E-mail: fsyghyz@163.com
  • 作者简介:郭 辉 ( 1987 - ), 安徽阜阳人, 硕士, 讲师, 主要从事关联成像方面的研究。 E-mail: fsyghyz@163.com
  • 基金资助:
    安徽省高校优秀青年人才支持计划 (gxyq2019175, gxyq2020102)

Orthogonal optimization of random speckle patterns for computational ghost imaging

GUO Hui ∗ , YE Zhiqiu   

  1. ( College of Information Engineering, Fuyang Normal University, Fuyang 236037, China )
  • Received:2021-03-29 Revised:2021-05-10 Published:2023-01-28 Online:2023-01-28

摘要: 为克服随机散斑图照射下统计噪声对计算鬼成像成像质量的影响, 提出了随机散斑图正交优化计算鬼 成像方法。首先在计算鬼成像的基础上分析随机散斑图对目标物体重构质量的影响; 然后结合实对称矩阵性质, 通过空间映射矩阵, 将原有随机散斑图正交化; 再利用重构的正交散斑图对未知物体进行照射并由桶探测器测 量, 测得的一系列桶探测器值与计算机存储的重构散斑图通过二阶关联运算对目标物体进行重构; 最后参考重 构散斑图的协方差矩阵特征, 对重构结果进行补偿, 进一步提升物体重构质量。该方法不仅能有效提升随机散 斑图计算鬼成像的成像质量, 同时还具有算法结构简单的特点。仿真实验结果表明: 相比于传统的随机散斑图 照射下的计算鬼成像, 该方法能有效地对目标物体进行重建, 并表现出良好的性能。

关键词: 图像与信息处理, 成像系统, 计算鬼成像, 随机散斑图, 二阶关联, 正交化

Abstract: To overcome the influence of statistical noise on the reconstruction quality of computational ghost imaging under the random speckle patterns illumination, a new computational ghost imaging method based on orthogonal optimization of random speckle patterns is proposed. Firstly, the effect of random speckle patterns on the reconstruction quality of the target object is analyzed based on computational ghost imaging. Then, combining the properties of a real symmetric matrix, the original random speckle patterns are orthogonalized by a spatial mapping matrix. Further, the reconstructed orthogonal speckle patterns are used to irradiate the unknown object and the transmitted light is measured by a bucket detector. A series of measured values by bucket detector and the reconstructed speckle patterns stored in the computer are used to reconstruct the target object through second-order correlation operation. Finally, according to the covariance matrix characteristics of the reconstructed speckle patterns, the reconstruction results are compensated to further improve the reconstruction quality of the object. This method can not only effectively improve the image quality of computational ghost imaging under the action of random speckle patterns, but also has the characteristics of simple algorithm structure. The simulation results show that the method can reconstruct the target effectively and has a good performance compared with the traditional computational ghost imaging under the illumination of random speckle patterns.

Key words: image and information processing, imaging system, computational ghost imaging, random speckle patterns, second-order correlation, orthogonalization

中图分类号: