[1] J. Han, Z. Zhang, J. Cao, Y. Luo, L. Zhang, Z. Li, J.J.R.S. Zhang, Prediction of winter wheat yield based on multi-source data and machine learning in China, 12 (2020) 236.[2] M. Huang, M.S. Kim, S.R. Delwiche, K. Chao, J. Qin, C. Mo, C. Esquerre, Q.J.J.o.F.E. Zhu, Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio, 181 (2016) 10-19.[3] A. Hlali, Z. Houaneb, H.J.O. Zairi, Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved Wave Concept Iterative Process method, 181 (2019) 423-431.[4] Y. Jiang, G. Li, M. Lv, H. Ge, Y.J.C.P.B. Zhang, Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy, 29 (2020) 098705.[5] Y. Jiang, F. Wang, H. Ge, G. Li, X. Chen, L. Li, M. Lv, Y.J.A. Zhang, Identification of Unsound Grains in Wheat Using Deep Learning and Terahertz Spectral Imaging Technology, 12 (2022) 1093.[6] B. Bokhari, M. Bhagyaveni, R.J.A.P.A. Rajkumar, On the use of graphene for quad-band THz microstrip antenna array with diversity reception for biomedical applications, 127 (2021) 1-9.[7] A. Veeraselvam, G.N.A. Mohammed, K. Savarimuthu, R.J.O. Sankararajan, Q. Electronics, A novel multi-band biomedical sensor for THz regime, 53 (2021) 1-20.[8] A. Doria, G.P. Gallerano, E. Giovenale, L. Senni, M. Greco, M. Picollo, C. Cucci, K. Fukunaga, A.C.J.A.S. More, An alternative phase-sensitive THz imaging technique for art conservation: History and new developments at the ENEA center of frascati, 10 (2020) 7661.[9] A. Artesani, M. Ljubenovic, S. Bonetti, A. Traviglia, Processing and analysis of THz time-domain spectroscopy imaging applied to cultural heritage, in: Optics for Arts, Architecture, and Archaeology VIII, SPIE, 2021, pp. 45-52.[10] J. Radovanovi?, N. Vukovi?, V. Milanovi?, Global optimization methods for the design of MIR-THz QCLs applied to explosives detection, in: Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN, Springer, 2021, pp. 71-86.[11] C. Ghorui, A.K. Chaudhary, P.N. Kumar, K. Rajesh, Study of THz time-domain spectroscopy based optical properties and detection of minerals and explosives from soil samples of different origins, in: 2022 Workshop on Recent Advances in Photonics (WRAP), IEEE, 2022, pp. 1-2.[12] Y. Shen, C. Zhao, B. Li, G. Li, Y. Yin, B. Pang, Determination of wheat moisture using terahertz spectroscopy combined with the tabu search algorithm, Analytical Methods, 13 (2021) 4120-4130.[13] N.V. Penkov, M.V. Goltyaev, M.E. Astashev, D.A. Serov, M.N. Moskovskiy, D.O. Khort, S.V. Gudkov, The Application of Terahertz Time-Domain Spectroscopy to Identification of Potato Late Blight and Fusariosis, Pathogens, 10 (2021).[14] Y. Shen, Y. Yin, B. Li, C. Zhao, G. Li, Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks, Computers and Electronics in Agriculture, 181 (2021).[15] J. Zhang, Y. Yang, X. Feng, H. Xu, J. Chen, Y.J.F.i.P.S. He, Identification of bacterial blight resistant rice seeds using terahertz imaging and hyperspectral imaging combined with convolutional neural network, 11 (2020) 821.[16] Jiang Y, Li G, Ge H, et al. Adaptive compressed sensing algorithm for terahertz spectral image reconstruction based on residual learning[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 281: 121586.[17] C.P. Chen, Z.J.I.t.o.n.n. Liu, l. systems, Broad learning system: An effective and efficient incremental learning system without the need for deep architecture, 29 (2017) 10-24.[18] Hsu L Y, Hu H T. QDCT-based blind color image watermarking with aid of GWO and DnCNN for performance improvement[J]. IEEE Access, 2021, 9: 155138-155152.[19] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE international conference on computer vision, 2015, pp. 1026-1034.[20] S. Huang, N. Cai, P.P. Pacheco, S. Narrandes, Y. Wang, W.J.C.g. Xu, proteomics, Applications of support vector machine (SVM) learning in cancer genomics, 15 (2018) 41-51.[21] T. Kattenborn, J. Leitloff, F. Schiefer, S.J.I.J.o.P. Hinz, R. Sensing, Review on Convolutional Neural Networks (CNN) in vegetation remote sensing, 173 (2021) 24-49. |