[1]C.H. Bennett and G. Brassard, ”Quantum Cryptography: Public Key Distribution and Coin Tossing, ” in Proceedings of the IEEE Intertional Conference on Computers, Systems and Signal Processing (IEEE Press, New York, 1984) pp.175-179.
[2]Artur K.Ekert, ”Quantum cryptography based on bell’s the rem, ”Phys.Rev. Lett. 67, 661-663 (1991).
[3]D.Mayers, ”Unconditional security in quantum cryptography, ” J. ACM 48, 351-406 (2001).
[4]H.K. Lo and H. F. Chau, ”Unconditional security of quantum key distribution over arbitrarily long distances, ” Science 283, 2050 (1999).
[5]P.W. Shor and J Preskill, ”Simple proof of security of the bb84 quantum key distribution protocol, ” Phys. Rev. Lett. 85, 441 (2000)
[6]Charles H Bennett, Francois Bessette, Gilles Brassard, Louis Salvail, and John Smolin, ”Experimental quantum cryptography, ” J.Cryptol. 5, 3-28 (1992).
[7]Sheng-Kai Liao, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan Yin, Qi Shen, Yuan Cao, Zheng-Ping Li, et al., ”Satellite-to-ground quantum key distribution, ” Nature 549, 43 (2017).
[8]H.K. Lo, M. Curty, and B. Qi, Measurement-Device Independent Quantum Key Distribution, Phys. Rev. Lett. 108, 130503 (2012).
[9]Wang Le, Zhao Shengmei, Gong Longyan, Cheng Weiwen, Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J].Chinese Physics B, 2015, 24(12): 120307.
[10]Jian-Yu, et al.”Experimental Passive Round-Robin Differential Phase-Shift Quantum Key Distribution.” Physical Review Letters 114.18(2015):180502-180502.
[11]In practice, single-photon sources are often replaced with weak coherent state sources or heralded single photon sources.Nevertheless, only the single-photon components are used for secure key distribution.
[12]Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani, and Leo nardo Banchi, ”Fundamental limits of repeaterless quantum communications, ” Nat.Commun. 8, 15043 (2017).
[13]Pirandola S, Laurenza R, Ottaviani C, et al.Fundamental limits of repeaterless quantum communications[J]. Nature Communications, 2017, 8:15043.
[14]Chen, Gang; Wang, Le; Li, Wei; Zhao, Yang; Zhao, Shengmei; Grus ka, Jozef.Multiple-pulse phase matching quantum key distribution[J].Quantum Information Processing, 2020, 19(11):416-
[15]Tamaki, K.; Lo, H.-K.; Wang, W.Y.; Lucamarini, M. Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arXiv 2.[J].rXiv:1805.05511., 018,, :-
[16]Grasselli, F.; Curty, M. Practical decoy-state method for twin-field quantum key distribution. New J. Phys. 2019, 21, 073001.
[17]Wang, X.-B.; Yu, Z.-W.; Hu, X.-L. Twin-field quantum key distribu tion with large misalignment error. Phys. Rev. A 2018, 98, 062323.
[18]Lucamarini M; Yuan Z L, Dynes J F, et al.Overcoming the rate-distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705).
[19]Xiongfeng Ma, Pei Zeng, and Hongyi Zhou, Phase-Matching Quan tum Key Distribution, Phys.Rev. X 8, 031043 (2018).
[20]Wang, X.-B. Decoy-state quantum key distribution with large random errors of light intensity. Phys. Rev. A 2007, 75, 052301.
[21]Wang, G.; Li, Z.; Qiao, Y.; Chen, Z.; Peng, X.; Guo, H. Light Source Monitoring in Quantum Key Distribution With Single-Photon Detector at Room Temperature. IEEE J. Quantum Electron. 2018, 54, 9300110.
[22]Qiao, Y.; Wang, G.; Li, Z.; Xu, B.; Guo, H. Monitoring an untrusted light source with single-photon detectors in measurement-device-independent quantum key distribution. Phys. Rev. A 2019, 99, 052302.
[23]Qiao, Yucheng, et al.”Sending-or-Not-Sending Twin-Field Quantum Key Distribution with Light Source Monitoring.” Entropy 22.1(2019):36.
[24]Zeng P, Wu W, Ma X .Symmetry-Protected Privacy: Beating the Rate-Distance Linear Bound Over a Noisy Channel[J]. Physical Review Applied, 2020, 13(6).
[25]Lo H K, Ma X, Chen K.Decoy state quantum key distribution[J].Physical review letters, 2005, 94(23):230504-
|