[1] Lu D R, Chen Z Y, Guo X, et al. Recent progress in near space atmospheric environment study[J]. Advances in Mechanics, 2009, 39(06): 674-682(in Chinese).吕达仁,陈泽宇,郭霞,等. 临近空间大气环境研究现状[J]. 力学进展, 2009, 39(06): 674-682.[2] Schunk R, Nagy A. Ionospheres: physics, plasma physics, and chemistry[M]. 2. Cambridge: Cambridge University Press, 2009: 22-31.[3] Feldman P D, Doering J P. Auroral electrons and the optical emissions of nitrogen[J]. Journal of Geophysical Research, 1975, 80(19): 2808-2812.[4] Chakrabarti S. Ground based spectroscopic studies of sunlit airglow and aurora[J]. Journal of atmospheric and solar-terrestrial physics, 1998, 60(14): 1403-1423.[5] Dothe H, Duff J, Gruninger J, et al. Auroral radiance modeling with SAMM2[C]. Remote Sensing of Clouds and the Atmosphere XIV, 2009: 67-73.[6] Heavner M, Morrill J, Siefring C, et al. Near-ultraviolet and blue spectral observations of sprites in the 320-460 nm region: N2(2PG) emissions[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A7).[7] Kuo C, Su H, Hsu R. The blue luminous events observed by ISUAL payload on board FORMOSAT-2 satellite[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 9795-9804.[8] Stenbaek‐Nielsen H, Mcharg M, Haaland R, et al. Optical spectra of small-scale sprite features observed at 10,000 fps[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(20): e2020JD033170.[9] Krupenie P H. The spectrum of molecular oxygen[J]. Journal of Physical and Chemical Reference Data, 1972, 1(2): 423-534.[10] Lofthus A, Krupenie P H. The spectrum of molecular nitrogen[J]. Journal of Physical and Chemical Reference Data, 1977, 6(1): 113-307.[11] Borst W L, Zipf E C. Cross section for electron-impact excitation of the (0,0) first negative band of N2+ from threshold to 3 keV[J]. Physical Review A, 1970, 1(3): 834-840.[12] Srivastava B N. Emission cross section for the first negative band system of oxygen produced by electron impact[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1970, 10(11): 1211-1217.[13] Finn T G, Aarts J F M, Doering J P. High energy-resolution studies of electron impact optical excitation functions I. The second positive system of N2[J]. The Journal of Chemical Physics, 1972, 56(11): 5632-5636.[14] Schulman M B, Sharpton F A, Chung S, et al. Emission from oxygen atoms produced by electron-impact dissociative excitation of oxygen molecules[J]. Physical Review A, 1985, 32(4): 2100-2116.[15] Van Zyl B, Pendleton Jr. W. N2+(X), N2+(A), and N2+(B) production in e? + N2 collisions[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A12): 23755-23762.[16] Itikawa Y. Cross sections for electron collisions with nitrogen molecules[J]. Journal of Physical and Chemical Reference Data, 2006, 35(1): 31-53.[17] Meng X, Wu B, Gao X-F, et al. Vibrationally resolved photoemissions of N2 (C3Πu → B3Πg) and CO (b3Σ+ → a3Π) by low-energy electron impacts[J]. The Journal of Chemical Physics, 2020, 153(2): 024301.[18] Feuerstein B, Grum-Grzhimailo A N, Mehlhorn W. Electron impact excitation cross sections of sodium autoionizing state from threshold to 1.5 keV[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31(3): 593-608.[19] Geng D-P, Yang Y-G, Liu S-H, et al. Design of an efficient monochromatic electron source for inverse photoemission spectroscopy[J]. Chinese Physics C, 2014, 38(11): 118202.[20] Mangina R S, Ajello J M, West R A, et al. High-resolution electron-impact emission spectra and vibrational emission cross sections from 330-1100 nm for N2[J]. The Astrophysical Journal Supplement Series, 2011, 196(1): 13.[21] ?imek M. Optical diagnostics of streamer discharges in atmospheric gases[J]. Journal of Physics D: Applied Physics, 2014, 47(46): 463001.[22] Terrell C A, Hansen D L, Ajello J M. The near-ultraviolet and visible emission spectrum of O2 by electron impact[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2004, 37(9): 1931-1949.[23] Christensen A B, Rees M H, Romick G J, et al. O I (7774 ?) and O I (8446 ?) emissions in aurora[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A4): 1421-1425.[24] Oyama S-I, Tsuda T T, Hosokawa K, et al. Auroral molecular-emission effects on the atomic oxygen line at 777.4 nm[J]. Earth, Planets and Space, 2018, 70(1): 166. |