[1] Bennett C H, Brassard G. An update on quantum cryptography[C]//Workshop on the theory and application of cryptographic techniques. Springer, Berlin, Heidelberg, 1984: 475-480.[2] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical review letters, 2012, 108(13): 130503.[3] Wang L, Zhao S M, Gong L Y, et al. Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum[J]. Chinese Physics B, 2015, 24(12): 120307.[4] Wang F, Chen W. High-dimensional quantum key distribution based on orbital angular momentum photons: A review[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 64-80(in Chinese). 王纺翔, 陈 巍. 综述: 基于轨道角动量光子态的 高维量子密钥分发[J]. 量子电子学报, 2022, 39(1): 64-80.[5] Takeoka M, Guha S, Wilde M M. Fundamental rate-loss tradeoff for optical quantum key distribution[J]. Nature communications, 2014, 5(1): 1-7.[6] Lucamarini M, Yuan Z L, Dynes J F, et al. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters[J]. Nature, 2018, 557(7705): 400-403.[7] Pirandola S, Laurenza R, Ottaviani C, et al. Fundamental limits of repeaterless quantum communications[J]. Nature communications, 2017, 8(1): 1-15.[8] Teng J, Yin Z Q, Fan-Yuan G J, et al. Sending-or-not-sending twin-field quantum key distribution with multiphoton states[J]. Physical Review A, 2021, 104(6): 062441.[9] Chen G, Wang L, Li W, et al. Multiple-pulse phase-matching quantum key distribution[J]. Quantum Information Processing, 2020, 19(11): 1-16.[10] Xu H, Yu Z W, Jiang C, et al. Sending-or-not-sending twin-field quantum key distribution: Breaking the direct transmission key rate[J]. Physical Review A, 2020, 101(4): 042330. [11] Zhou Y, Yin Z Q, Wang R Q, et al. Twin-field quantum key distribution with partial phase postselection[J]. Physical Review Applied, 2022, 18(5): 054026. [12] Curty M, Azuma K, Lo H K. Simple security proof of twin-field type quantum key distribution protocol[J]. npj Quantum Inf., 2019, 5(1): 1-6.[13] Wang W, Lo H K. Simple method for asymmetric twin-field quantum key distribution[J]. New Journal of Physics, 2020, 22(1): 013020.[14] Wang X B, Peng C Z, Zhang J, et al. General theory of decoy-state quantum cryptography with source errors[J]. Phys. Rev. A, 2008, 77(4): 042311.[15] Mao Q P, Wang L, Zhao S M. Decoy-state round-robin differential-phase-shift quantum key distribution with source errors[J]. Quantum Inf. Process., 2020, 19(2): 1-12.[16] Wang S, Zhang S L, Li H W, et al. Decoy-state theory for the heralded single-photon source with intensity fluctuations[J]. Phys. Rev. A, 2009, 79(6): 062309.[17] Zhou C, Bao W S, Fu X Q. Decoy-state quantum key distribution for the heralded pair coherent state photon source with intensity fluctuations[J]. Sci. China Inf. Sci., 2010, 53(12): 2485-2494.[18] Wang Q, Wang X B. Simulating of the measurement-device independent quantum key distribution with phase randomized general sources[J]. Sci. Rep., 2014, 4(1): 1-7.[19] Jiang C, Yu Z W, Wang X B. Measurement-device-independent quantum key distribution with source state errors in photon number space[J]. Phys. Rev. A, 2016, 94(6): 062323.[20] Yu Y, Wang L, Zhao S, et al. Decoy-state phase-matching quantum key distribution with source errors[J]. Opt. Express, 2021, 29(2): 2227-2243.[21] Duan L M, Lukin M D, Cirac J I, et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 2001, 414(6862): 413-418.[22] Childress L, Taylor J M, S?rensen A S, et al. Fault-tolerant quantum communication based on solid-state photon emitters[J]. Phys. Rev. Lett., 2006, 96(7): 070504.[23] Azuma K, Takeda H, Koashi M, et al. Quantum repeaters and computation by a single module: remote nondestructive parity measurement[J]. Phys. Rev. A, 2012, 85(6): 062309.[24] Yin H L, Fu Y, Chen Z B. Practical quantum digital signature[J]. Phys. Rev. A, 2016, 93(3): 032316.[25] Arrazola J M, Lütkenhaus N. Quantum fingerprinting with coherent states and a constant mean number of photons[J]. Phys. Rev. A, 2014, 89(6): 062305.[26] Zeng P, Wu W, Ma X. Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel[J]. Phys. Rev. Applied, 2020, 13(6): 064013. |