| [1]Liang P L, Dai J M. Review of Terahertz Science and Technology[J]. Techniques of Automation and Applications, 2015, 34(06): 1-8+15.梁培龙,戴景民. 太赫兹科学技术的综述[J]. 自动化技术与应用,2015, 34(06): 1-8+15.[2]Zhang C L, Mu K J. Terahertz Spectroscopy and Imaging[J]. Laser & Optoelectronics Progress, 2010, 47(02): 1-14.张存林,牧凯军. 太赫兹波谱与成像[J]. 激光与光电子学进展,2010, 47(02): 1-14.[3]Yan Z, Zhu L G, Meng K, et al. THz medical imaging: from in vitro to in vivo[J]. Trends in Biotechnology, 2022, 40(7): 816-830.[4]Xie S, Li H R, Li L X, et al. Survey of terahertz communication technology[J]. Journal on Communications, 2020, 41(5): 168-186.谢莎,李浩然,李玲香,等. 太赫兹通信技术综述[J]. 通信学报,2020, 41(5): 168-186.[5]Feng W, Wei S T, Cao J C. 6G technology development vision and terahertz communication[J]. Journal of Physics, 2021, 70(24): 175-189.冯伟,韦舒婷,曹俊诚. 6G技术发展愿景与太赫兹通信[J]. 物理学报,2021, 70(24): 175-189.[6]Yu X, Jia S, Hu H, et al. 160 Gbit/s photonics wireless transmission in the 300-500 GHz band[J]. APL Photonics, 2016, 1(8): 081301.[7]Wang J, Al-Khalidi A, Ahearne S, et al. 22Gbps/80cm Low-cost THz wireless system[C]. 2021 51st European Microwave Conference, 2022, 209-212.[8]Hirata A, Kosugi T, Takahashi H, et al. 120-GHz-Band Wireless Link Technologies for Outdoor 10-Gbit/s Data Transmission[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(3): 881-895.[9]Li X Y, Yu J, Li Z, et al. 1-Tb/s Millimeter-Wave Signal Wireless Delivery at D-Band[J]. Journal of Lightwave Technology, 2019, 37(1): 196-204.[10]Song H, Lee N. Terahertz Communications: Challenges in the Next Decade[J]. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 105-117.[11]Pang X D, Ozolins O, Zhang L, et al. Free‐Space Communications Enabled by Quantum Cascade Lasers[J]. Physica status solidi (a), 2020, 218.[12]Deng Q Z, Zhang H Q, Zhang L, et al. Terahertz photonic communication technologies[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(08): 790-803.邓秋卓,张红旗,张鹿,等. 光子太赫兹通信技术[J]. 太赫兹科学与电子信息学报,2022, 20(08): 790-803.[13]You X H, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64(1): 74.[14]Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of the International Conference on Computers, Systems and Signal Processing, 1984, 175-179.[15]Bennett C H, Brassard G. Experimental quantum cryptography: the dawn of a new era for quantum cryptography: the experimental prototype is working[J]. ACM Sigact News, 1989, 20(4): 78-80.[16]Muller A, Breguet J, Gisin N. Experimental demonstration of quantum cryptography using polarized photons in optical fibre over more than 1 km[J]. Europhysics Letters, 1993, 23(6): 383.[17]Townsend P D, Rarity J G, Tapster P R. Enhanced single photon fringe visibility in a 10 km-long prototype quantum cryptography channel[J]. Electronics Letters, 1993, 29(14): 1291-1293.[18]Yuan Z, Gobby C, Shields A J. Quantum key distribution over distances as long as 101 km[C]. Quantum Electronics & Laser Science, Qels Postconference Digest, 2003.[19]Wang X B. Decoy-state protocol for quantum cryptography with four different intensities of coherent light[J]. Physical Review A, 2005, 72(1): 12322-012322.[20]Acín A, Brunner N, Gisin N, et al. Device-Independent Security of Quantum Cryptography against Collective Attacks[J]. Physical Review Letters, 2007, 98, 230501.[21]Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.[22]Liu Y, Chen T Y, Wang L J, et al. Experimental measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2013, 111(13): 130502.[23]Liao S K, Cai W Q. Liu W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43.[24]Chao Y L, Cheng Z P, Jian W P, et al. Quantum Communication at 7,600km and Beyond[J]. Communications of the ACM, 2018, 61(11): 42-43.[25]Wang S, Yin Z Q, He D Y, et al. Twin-field quantum key distribution over 830-km fibre[J]. Nature Photonics, 2022, 16: 154–161.[26]Yang L, Wei J Z, C J, et al. Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber Distance[J]. Physical Review Letters, 2023, 130(21): 210801.[27]Zhu H T, Huang Y Z, Liu H, et al. Experimental Mode-Pairing Measurement-Device-Independent Quantum Key Distribution without Global Phase Locking[J]. Physical Review Letters, 2023, 130: 030801.[28]Zhou L, Lin J P, Xie Y M, et al. Experimental Quantum Communication Overcomes the Rate-Loss Limit without Global Phase Tracking[J]. Physical Review Letters, 2023, 130: 250801.[29]Van Loock P, Braunstein S L. Unconditional teleportation of continuous-variable entanglement[J]. Physical Review A, 1999, 61(1): 010302.[30]Ralph T C. Security of continuous-variable quantum cryptography[J]. Physical Review A, 2000, 62(6): 062306.[31]Reid M D. Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations[J]. Physical Review A, 2000, 62(6): 062308. [32]Grosshans F, Grangier P. Continuous Variable Quantum Cryptography Using Coherent States[J]. Physical Review Letters, 2002, 88(5): 057902.[33]Grosshans F, Grangier P. Reverse reconciliation protocols for quantum cryptography with continuous variables[J], arXiv:quant-ph/0204127, 2002.[34]Weedbrook C, Lance A M, Bowen W P, et al. Quantum Cryptography Without Switching[J]. Physical Review Letters, 2004, 93(17): 170504.[35]Lodewyck J, Debuisschert T, Tualle-Brouri R, et al. Controlling excess noise in fiber-optics continuous-variable quantum key distribution[J]. Physical Review A, 2005, 72(5): 050303(R).[36]Lodewyck J, Bloch M, Garcia-Patron R, et al. Quantum key distribution over 25 km with an all-fiber continuous-variable system[J]. Physical Review A, 2007, 76(4): 042305.[37]Dai W, Lu Y, Zhu J, et al. An integrated quantum secure communication system[J]. Science China Information Sciences, 2011, 54(12): 2578-2591.[38]Leverrier A, Alléaume R, Boutros J, et al. Multidimensional reconciliation for a continuous-variable quantum key distribution[J]. Physical Review A, 2008, 77(4): 042325.[39]Jouguet P, Kunz-Jacques S, Diamanti, E. Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution[J]. Physical Review A, 2013, 87(6): 062313.[40]Huang D, Huang P, Lin D, et al. Long-distance continuous-variable quantum key distribution by controlling excess noise[J]. Scientific Reports, 2016, 6: 19201.[41]Zhang Y, Li Z, Chen Z, et al. Continuous-variable QKD over 50 km commercial fiber[J]. Quantum Science and Technology, 2019, 4: 035006.[42]Zhang Y, Chen Z, Pirandola S, et al. Long-Distance Continuous-Variable Quantum Key Distribution over 202.81 km of Fiber[J]. Physical Review Letters, 2020, 124: 010502.[43]Long G L, Liu X S. Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Physical Review A, 2002, 65(3): 032302.[44]Horodecki R, Horodecki P, Horodecki M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81: 865-942.[45]Bovino F A, Degiovanni I P. Quantum correlation bounds for optimization of quantum-information experiments: the Wigner inequality case[J]. Physical Review A, 2008, 77: 052110.[46]Deng F G, Long G L. Secure direct communication with a quantum one-time pad[J]. Physical Review A, 2004, 69(5): 052319.[47]Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum super dense coding[J]. Physical Review A, 2005, 71(4): 044305.[48]Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs[J]. Physics Letters A, 2006, 359(5): 359-365.[49]Pirandola S, Braunstein S L, Mancini S, et al. Quantum direct communication with continuous variables[J]. Europhysics Letters, 2008, 84(2): 20013.[50]Zhu F, Zhang W, Sheng Y, et al. Experimental long distance quantum secure direct communication[J]. Science Bulletin, 2017, 62(22): 1519-1524.[51]Sun Z, Song L, Huang Q, et al. Toward practical quantum secure direct communication: a quantum memory-free protocol and code design[J]. IEEE Transactions on Communications, 2020, 68(9): 5778-5792.[52]Zhou L, Sheng Y B, Long G L. Device-independent quantum secure direct communication against collective attacks[J]. Science Bulletin, 2020, 65(1): 12-20.[53]Zhang H, Sun Z, Qi R, et al. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states[J]. Light: Science & Applications, 2022, 11(1): 83.[54]Weedbrook C, Pirandola S, Lloyd S, et al. Quantum cryptography approaching the classical limit[J]. Physical Review Letters, 2010, 105 (11): 110501.[55]Weedbrook C, Pirandola S, Ralph T C. Continuous-variable quantum key distribution using thermal states[J]. Physical Review A, 2012 ,86(2): 022318.[56]Weedbrook C, Ottaviani C, Pirandola S. Two-way quantum cryptography at different wavelengths[J]. Physical Review A, 2014, 89(1): 012309.[57]Liu X, Zhu C, Chen N, et al. Practical aspects of terahertz wireless quantum key distribution in indoor environments[J]. Quantum Information Processing, 2018, 17: 304.[58]Ottaviani C, Woolley M J, Erementchouk M, et al. Terahertz Quantum Cryptography[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(3): 483-495.[59]He Y, Mao Y, Huang D, et al. Indoor channel modeling for continuous variable quantum key distribution in the terahertz band[J]. Optics Express, 2020, 28(22): 32386-32402.[60]Kundu N K, Dash S P, McKay M R, et al. MIMO Terahertz Quantum Key Distribution[J]. IEEE Communications Letters, 2021, 25(10): 3345-3349.[61]Wang Z, Robert M, Jonathan G. Inter-Satellite Quantum Key Distribution at Terahertz Frequencies[J]. ICC 2019 - 2019 IEEE International Conference on Communications (ICC), (2019): 1-7.[62]Liu C J, Zhu C H, Liu X, et al. Multicarrier Multiplexing Continuous-Variable Quantum Key Distribution at Terahertz Bands Under Indoor Environment and in Inter-Satellite Links Communication[J]. IEEE Photonics Journal, 2021,13(4): 7600113.[63]Liu C J, Zhu C H, Nie M, et al. Composable security for inter-satellite continuous-variable quantum key distribution in the terahertz band[J]. Optics Express, 2022, 30(9): 14798-14816.[64]Liu C J, Zhu C H, Nie M, et al. FL-QKD based on optical-THz biphotons generated by spontaneous parametric downconversion in inter-satellite wireless communication[J]. Applied Optics, 2021, 60(24): 7362-7370.[65]Liu C J, Zhu C H, Li Z, et al. Continuous-Variable Quantum Secret Sharing Based on Thermal Terahertz Sources in Inter-Satellite Wireless Links[J]. Entropy (Basel), 2021, 23(9): 1223.[66]Shi L L, Wu J B, Tu X C, et al. Terahertz single photon detectors (in Chinese)[J]. Sci Sin-Phys Mech Astron, 2021, 51: 054203.石粒力,吴敬波,涂学凑,等. 太赫兹单光子探测器[J]. 中国科学: 物理学 力学 天文学,2021, 51: 054203[67]Ramos R V. A Proposal for Single-Photon Detection in Millimeter-Wave and THz Regions[J]. 2021 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), (2021): 1-3.[68]Guedes V F, Mendonca F A, Silva J B R, et al. Discrete Variable Quantum Key Distribution in Millimeter-Wave and THz Regions[J]. IEEE Photonic Technology Letters, 2021. |