| [1] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25.[2] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.[3] Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9.[4] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778.[5] LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.[6] Li Y C, Zhou R G, Xu R Q, et al. A quantum deep convolutional neural network for image recognition[J]. Quantum Science and Technology, 2020, 5(4): 044003.[7] Wei S J, Chen Y H, Zhou Z R, et al. A quantum convolutional neural network on NISQ devices[J]. AAPPS Bulletin, 2022, 32: 1-11.[8] Chen G, Chen Q, Long S, et al. Quantum convolutional neural network for image classification[J]. Pattern Analysis and Applications, 2023, 26(2): 655-667.[9] Pesah A, Cerezo M, Wang S, et al. Absence of barren plateaus in quantum convolutional neural networks[J]. Physical Review X, 2021, 11(4): 041011.[10] 范兴奎, 刘广哲, 王浩文等. 基于量子卷积神经网络的图像识别新模型[J]. 电子科技大学学报, 2022, 51(05): 642-650.[11] Cong I, Choi S, Lukin M D. Quantum convolutional neural networks[J]. Nature Physics, 2019, 15(12): 1273-1278.[12] Henderson M, Shakya S, Pradhan S, et al. Quanvolutional neural networks: powering image recognition with quantum circuits[J]. Quantum Machine Intelligence, 2020, 2(1): 2.[13] Hur T, Kim L, Park D K. Quantum convolutional neural network for classical data classification[J]. Quantum Machine Intelligence, 2022, 4(1): 3.[14] Liu J, Lim K H, Wood K L, et al. Hybrid quantum-classical convolutional neural networks[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(9): 290311.[15] Ruiz-Perez L, Garcia-Escartin J C. Quantum arithmetic with the quantum Fourier transform[J]. Quantum Information Processing, 2017, 16: 1-14.[16] Yao X W, Wang H, Liao Z, et al. Quantum image processing and its application to edge detection: theory and experiment[J]. Physical Review X, 2017, 7(3): 031041.[17] 臧一鸣, 朱尚超, 魏战红等. 一种量子图像伪彩色编码方法[J]. 量子电子学报, 2022, 39(3): 343.[18] 杨光, 钞苏亚, 聂敏等. 面向图像分类的混合量子长短期记忆神经网络构建方法[J]. 物理学报, 2023, 72(05): 474-487.[19] 吕颜轩, 高庆, 吕金虎等. 面向近期量子处理器的量子神经网络研究进展[J]. 中国科学: 技术科学, 2022, 52(04): 547-564.[20] Cerezo M, Arrasmith A, Babbush R, et al. Variational quantum algorithms[J]. Nature Reviews Physics, 2021, 3(9): 625-644.[21] Huang H L, Xu X Y, Guo C, et al. Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation[J]. Science China Physics, Mechanics & Astronomy, 2023, 66(5): 250302.[22] Bharti K, Cervera-Lierta A, Kyaw T H, et al. Noisy intermediate-scale quantum algorithms[J]. Reviews of Modern Physics, 2022, 94(1): 015004.[23] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-international conference on neural networks. IEEE, 1995, 4: 1942-1948.[24] Benedetti M, Lloyd E, Sack S, et al. Parameterized quantum circuits as machine learning models[J]. Quantum Science and Technology, 2019, 4(4): 043001.[25] Ruder S. An overview of gradient descent optimization algorithms[J]. arXiv preprint arXiv:1609.04747, 2016.[26] Schuld M, Bergholm V, Gogolin C, et al. Evaluating analytic gradients on quantum hardware[J]. Physical Review A, 2019, 99(3): 032331.[27] Crooks G E. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition[J]. arXiv preprint arXiv:1905.13311, 2019.[28] Mari A, Bromley T R, Killoran N. Estimating the gradient and higher-order derivatives on quantum hardware[J]. Physical Review A, 2021, 103(1): 012405.[29] Bergholm, V. et al. Pennylane: Automatic differentiation of hybrid quantum–classical computations. Preprint at https://arxiv.org/abs/1811.04968 (2018).[30] Nesterov Y E. A method of solving a convex programming problem with convergence rate O(1/k2)[C]//Doklady Akademii Nauk. Russian Academy of Sciences, 1983, 269(3): 543-547.[31] 吴琼, 马雷. 一种基于 LoG 算子的量子图像边缘检测算法[J]. 量子电子学报, 2022, 39(5): 720.[32] Sharma K, Khatri S, Cerezo M, et al. Noise resilience of variational quantum compiling[J]. New Journal of Physics, 2020, 22(4): 043006.[33] Cincio L, Rudinger K, Sarovar M, et al. Machine learning of noise-resilient quantum circuits[J]. PRX Quantum, 2021, 2(1): 010324.[34] Zhang Y H, Zheng P L, Zhang Y, et al. Topological quantum compiling with reinforcement learning[J]. Physical Review Letters, 2020, 125(17): 170501.[35] He Z, Li L, Zheng S, et al. Variational quantum compiling with double Q-learning[J]. New Journal of Physics, 2021, 23(3): 033002.[36] Kuo E J, Fang Y L L, Chen S Y C. Quantum architecture search via deep reinforcement learning[J]. arXiv preprint arXiv:2104.07715, 2021.[37] Ostaszewski M, Trenkwalder L M, Masarczyk W, et al. Reinforcement learning for optimization of variational quantum circuit architectures[J]. Advances in Neural Information Processing Systems, 2021, 34: 18182-18194. |