量子电子学报 ›› 2025, Vol. 42 ›› Issue (1): 123-0.doi: 10.3969/j.issn.1007-5461.2025.01.012

• 量子计算 • 上一篇    下一篇

基于粒子群优化算法的量子卷积神经网络

张嘉雯 1, 蔡彬彬 1,2, 林 崧 1*   

  1. 1 福建师范大学计算机与网络空间安全学院, 福建 福州 350007; 2 数字福建环境监测物联网实验室, 福建 福州 350007
  • 收稿日期:2024-02-28 修回日期:2024-04-28 出版日期:2025-01-28 发布日期:2025-01-28
  • 通讯作者: E-mail: lins95@fjnu.edu.cn E-mail:E-mail: lins95@fjnu.edu.cn
  • 作者简介:张嘉雯 ( 2000 - ), 女, 福建龙岩人, 硕士, 主要从事量子机器学习的研究。E-mail: gamung123@163.com
  • 基金资助:
    国家自然科学基金 (62171131, 61976053), 福建省高等学校新世纪优秀人才支持计划 (2022J01186), 福建省自然科学基金项目 (2023J01533)

Quantum convolutional neural network based on particle swarm optimization algorithm

ZHANG Jiawen 1 , CAI Binbin 1,2 , LIN Song 1*   

  1. 1 College of Computer and Cyber Security, Fujian Normal University, Fuzhou 350007, China; 2 Digital Fujian Internet-of-Things Laboratory of Environmental Monitoring, Fuzhou 350007, China
  • Received:2024-02-28 Revised:2024-04-28 Published:2025-01-28 Online:2025-01-28

摘要: 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题, 提出了一种基于粒子 群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子, 并利用粒子群优化算法对 电路进行优化, 从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿 真实验表明, 该模型具有较强的学习能力和良好的泛化性能, 准确率分别可达94.7%和99.05%。相较于现有量子卷 积神经网络模型, 平均分类精度最高分别提升了4.14%和1.43%。

关键词: 量子光学, 量子卷积神经网络, 粒子群优化算法, 量子机器学习, 参数化量子电路

Abstract: Aiming at the lack of adaptive target selection strategy for parameterized quantum circuits in current quantum convolutional neural network models, a quantum convolutional neural network model based on the particle swarm optimization algorithm is proposed to optimize circuits automatically. The model optimizes quantum circuits by encoding the quantum circuits as particles, then uses the particle swarm optimization algorithm to search for the circuit architectures that performs well in image classification tasks. Stimulation experiments based on Fashion MNIST and MNIST datasets show that the model has strong learning ability and good generalization performance, with accuracy up to 94.7% and 99.05%, respectively. Compared to current quantum convolutional neural network models, the average classification accuracy is improved by 4.14% and 1.43% to the maximum, respectively.

Key words: quantum optics, quantum convolutional neural network, particle swarm optimization algorithm, quantum machine learning, parameterized quantum circuit

中图分类号: