量子电子学报 ›› 2025, Vol. 42 ›› Issue (3): 361-368.doi: 10.3969/j.issn.1007-5461.2025.03.008

• 量子光学 • 上一篇    下一篇

Lipkin-Meshkov-Glick 模型中的 自旋压缩和量子纠缠

李嵩松   

  1. 南昌师范学院物理与电子信息学院, 江西 南昌 330032
  • 收稿日期:2023-09-26 修回日期:2023-12-20 出版日期:2025-05-28 发布日期:2025-05-28
  • 通讯作者: E-mail: mphysics@163.com E-mail:E-mail: mphysics@163.com
  • 作者简介:李嵩松 ( 1971 - ), 江西丰城人, 博士, 教授, 主要从事量子信息方面的研究. E-mail: mphysics@163.com
  • 基金资助:
    江西省教育厅科技项目 (GJJ212611), 南昌市重点实验室项目 (2021-NCZDSY-015)

Spin squeezing and quantum entanglement in Lipkin‐Meshkov‐Glick model

LI Songsong   

  1. Faculty of Physics and Electronic Information, Nanchang Normal University, Nanchang 330032, China
  • Received:2023-09-26 Revised:2023-12-20 Published:2025-05-28 Online:2025-05-28

摘要: 自旋压缩和量子纠缠在量子信息处理中有着十分重要而广泛的应用, 因此, 如何在各种不同量子系统中产 生自旋压缩和量子纠缠一直是相关研究领域的热点之一。本文理论研究了在Lipkin-Meshkov-Glick模型中如何产生 自旋压缩和量子纠缠, 利用自旋波近似, 解析计算了自旋-自旋相互作用参数和线性相互作用参数对量子纠缠和自旋 压缩的影响。研究结果表明, 通过调节线性相互作用强度、自旋-自旋相互作用强度及其演化时间, 可以周期性地产 生自旋压缩和量子纠缠。其中, 线性相互作用越小或自旋-自旋相互作用越强, 产生的纠缠和自旋压缩越好, 周期也 越大。

关键词: 量子光学, 自旋压缩, 量子纠缠, Lipkin-Meshkov-Glick模型, 自旋波近似

Abstract: Spin squeezing and quantum entanglement have significant and widespread applications in quantum information processing. Therefore, how to generate spin squeezing and quantum entanglement in various quantum systems has become a very important research topic. In this paper, we theoretically investigate how to generate spin squeezing and quantum entanglement in the Lipkin-Meshkov-Glick model. Using spin-wave approximation, we analytically calculate the effects of the spin-spin interaction parameter and the linear interaction parameter on quantum entanglement and spin squeezing. The results show that spin squeezing and quantum entanglement can be periodically generated by adjusting the linear interaction strength, spin-spin interaction strength and its evolution time. And it is also shown that the smaller the linear interaction parameter or the stronger the spin-spin interaction, the better the entanglement and spin squeezing, and the larger the period.

Key words: quantum optics, spin squeezing, quantum entanglement, Lipkin-Meshkov-Glick model, spinwave approximation

中图分类号: