量子电子学报 ›› 2025, Vol. 42 ›› Issue (5): 602-610.doi: 10.3969/j.issn.1007-5461.2025.05.002

• 光谱 • 上一篇    下一篇

太赫兹光谱水蒸汽吸收噪声去除方法研究

寇冬阳 1, 刘泉澄 1, 邓 琥 1,2, 段勇威 1, 尚丽平 1*   

  1. 1 西南科技大学信息与控制工程学院, 四川 绵阳 621000; 2 西南科技大学四川天府新区创新研究院, 四川 成都 610299
  • 收稿日期:2024-02-04 修回日期:2024-06-04 出版日期:2025-09-28 发布日期:2025-09-28
  • 通讯作者: E-mail: shangliping@swust.edu.cn E-mail:shangliping@swust.edu.cn
  • 作者简介:寇冬阳 ( 1999 - ), 四川达州人, 研究生, 主要从事太赫兹光谱方面的研究。E-mail: KDY0708@126.com
  • 基金资助:
    国家自然科学基金 (22305198)

Research on method of removing water vapor noise in terahertz spectroscopy

KOU Dongyang 1 , LIU Quancheng 1 , DENG Hu 1,2 , DUAN Yongwei 1 , SHANG Liping 1*   

  1. 1 School of Information and control Engineering, Southwest University of Science and Technology, Mianyang 621000, China; 2 Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
  • Received:2024-02-04 Revised:2024-06-04 Published:2025-09-28 Online:2025-09-28
  • Supported by:

摘要: 针对环境中水蒸汽对太赫兹波吸收产生的噪声, 提出了一种基于BP神经网络的信号恢复方法。该方法对 采集到的信号在频域对振幅使用主成份分析 (PCA) 进行特征提取, 并使用粒子群算法 (PSO) 对反向传播 (BP) 神经 网络的参数进行优化。结果表明, BP神经网络对于内部验证的物质炸药DMDP和RDX恢复效果最佳, 其信号相似 度分别为 0.995、0.999,PCA 结合 BP 神经网络 (PCA-BP) 恢复信号的相似度分别为 0.986、0.944,PSO 优化 PCA-BP (PSO-PCA-BP) 恢复结果的相似度分别为0.987、0.997; 而对于外部验证的物质炸药345TNT和NQ, BP神经网络恢复 结果的相似度分别为0.273、0.278, PCA-BP恢复结果的相似度分别为0.944、0.985, PSO-PCA-BP的恢复效果最佳, 其 相似度分别为0.946、0.993。进一步结合相位信息和振幅信息使用傅里叶逆变换得到时域信号, 证明所提方法对时域 数据的改善同样有效。

关键词: 太赫兹光谱, 水蒸汽噪声去除, BP神经网络, 主成分分析, 粒子群优化

Abstract: A signal recovery method based on BP neural networks is proposed in this work to address the noise caused by water vapor absorption of terahertz waves in the environment. The method involves feature extraction on the amplitude of the collected signals in the frequency domain using principal component analysis (PCA), followed by the optimization of the back propagation (BP) neural network parameters using particle swarm optimization (PSO) algorithm. The results show that the BP neural network achieves the best signal recovery for internally validated explosives DMDP and RDX, with signal similarities of 0.995 and 0.999, respectively, the PCA combined with BP neural network (PCA-BP) achieves the signal similarity of 0.986 and 0.944, respectively, and the PSO-optimized PCA-BP (PSOPCA-BP) recovery achieves the similarities of 0.987 and 0.997, respectively. For externally validated explosives 345TNT and NQ, the BP neural network's recovery similarity scores are 0.273 and 0.278, respectively, PCA-BP shows improvements with scores of 0.944 and 0.985, respectively, and PSO-PCABP yields the best recovery results with similarities of 0.946 and 0.993. Additionally, by combining phase and amplitude information, the time-domain signals are obtained using the inverse Fourier transform, which proves that the proposed method is equally effective in improving time-domain data.

Key words: terahertz spectroscopy, water vapor noise removal, BP neural network, principal component analysis, particle swarm optimization

中图分类号: