| [1] Li S Z, Li Y Q. Review of quantum radar application[J]. Telecommunication Engineering, 2021, 61(12): 1599-1604. 李庶中, 李越强. 量子雷达应用述评[J]. 电讯技术, 2021, 61(12): 1599-1604.[2] Jin L. Research progress of quantum radar[J]. Modern Radra, 2017, 39(3): 1-7. 金林. 量子雷达研究进展[J]. 现代雷达, 2017, 39(3): 1-7.[3] Li Y Q, Ren C L. Quantum radar programs and their progress based on improved accuracy[J]. Progress In Physics, 2022, 42(2): 61-65.李勇强, 任昌亮. 基于提高精度的量子雷达方案及其进展[J]. 物理学进展, 2022, 42(2): 61-65.[4] Sanz M, Las Heras U, Garcia-Ripoll J J, et al. Quantum estimation methods for quantum illumination[J]. Physical Review Letters, 2017, 118(7): 070803.[5] Xian P, Wu F. Detection performance analysis of quantum radar target[J]. Electronic Information Warfare Technology, 2021, 36(4): 6-12. 鲜佩, 吴峰. 量子雷达目标探测性能分析[J]. 电子信息对抗技术, 2021, 36(4): 6-12.[6] Tao Z W, Wang S, Ren Y C. Influence of phase fluctuation by atmospheric turbulence on phase estimation of coherent state quantum radar[J]. Journal of National University of Defense Technology, 2020, 42(1): 34-37.陶志炜, 王书,任益充,等. 大气湍流引起的相位起伏对相干态量子雷达相位估计的影响[J]. 国防科技大学学报, 2020, 42(1): 34-37.[7] Nie M, Wang J, Yang G, et al. Effect of tropospheric water cloud on detection performance of quantum interferometric radar and its simulation[J]. Laser & Optoelectronics Progress, 2022, 59(5): 0501001. 聂敏, 王瑾, 杨光, 等. 对流层水云对量子干涉雷达探测性能的影响及仿真[J]. 激光与光电子学进展, 2022, 59(5): 0501001.[8] Nie M, Zhang Z, Yang G, et al. Adaptive strategy for optimal average photon number in quantum interference radar in the background of stratocumulus[J]. Laser Journal, 2024, 45(1):26-32.聂敏, 张政, 杨光, 等. 层积云背景下量子干涉雷达最优平均光子数自适应策略[J]. 激光杂志, 2024, 45(1):26-32.[9] Kain J S, Coniglio M C, Correia J et al. A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance[J]. Bulletin of the American Meteorological Society, 2013, 94(8): 1213-1225.[10] Hu S, Gao T C, Liu L. Analysis on scattering characeristics and equivalent Mie scattering errors of non-spherical atmospherical aerosols[J]. Journal of the Meteorological Sciences, 2014, 36(6): 612-619.胡帅, 高太长, 刘磊. 非球形气溶胶粒子散射特性及其等效Mie散射误差分析[J]. 气象科学, 2014, 36(6): 612-619.[11] Zhao Z Q. Impact of charhed dust on millimeter wave transmission and millimeter wave radar[D]. Xi’an: Xidian University, 2022. 赵志强. 带电沙尘对毫米波传播及毫米波雷达的影响[D]. 西安: 西安电子科技大学, 2022.[12] Farrell W M, Jackson T L. Electrostatic field in dust devils: An analog to Mars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2942-2949.[13] Zhang Z J, Wang Q, Sun Y J, et al. Study of scattering of electromagnetic waves by atmospheric charged particles[J]. Chinese Journal of Radio Science, 2011, 26(4): 758-764.张自嘉, 王其, 孙亚杰. 大气带电粒子对电磁波的散射研究[J]. 电波科学学报, 2011, 26(4): 758-764.[14] Feng W, Jiang K, Lollie M L J, et al. Super-resolving single-photon number-path-entangled state and its generation[J]. Physical Review A, 2014, 89(4): 043824.Farrell W M, Jackson T L. Electrostatic field in dust devils: An analog to Mars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2942-2949.[15] Dong Q, Guo L, Li Y, et al. Weathering Sand and Dust Storms: Particle shapes, storm height, and elevation angle sensitivity for microwave propagation in earth-satellite links[J]. IEEE Antennas and Propagation Magazine, 2017, 59(1): 58-65.[16] Cai J H. A study of the effects of multilayer and multiple scattering of atmospheric particles and of charged effects on scattering characteristics[D]. Nanjing: Nanjing University of Information Science & Technology, 2021.蔡嘉晗. 大气粒子多层、多次散射及带电效应对散射特性的影响研究[D]. 南京: 南京信息工程大学, 2021.[17] Zong R R. Light absorption properties of dust aerosol and effective refractive index study[D]. Hangzhou: Zhejiang University, 2021.宗瑞瑞. 沙尘气溶胶的光吸收特性和有效负折射指数研究[D]. 杭州: 浙江大学, 2021.[18] Zhou Y H, He Q S, Zheng X J, et al. Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles[J]. The European Physical Journal E, 2005, 17: 181-187.[19] Shi L. Research on the effects of atmospheric charged particles on the performance of satellite-ground quantum link[D]. Xi'an: Xi'an University of Posts & Telecommunications, 2018. 石力. 大气带电粒子对星地量子链路通信性能影响的研究[D]. 西安: 西安邮电大学, 2018.[20] Shao C C, Ma J J, et al. Based on T-matrix method studied scattering characteristics of non-spherical particles[J]. Journal of Atomic and Molecular Physics, 2010, 27(3): 475-479. 邵长城, 麻金继. 利用T-matrix计算非球形粒子散射特性的研究[J]. 原子与分子物理学报, 2010, 27(3): 475-479.[21] Kaegi R. Chemical and morphological analysis of airborne particles at a tunnel construction site[J]. Journal of Aerosol Science, 2004, 35(5): 621-632.[22] Wang Q, Hao L L, Zhang Y, et al. Optimal detection strategy for super-resolving quantum lidar[J]. Journal of Applied Physics, 2016, 119(2): 023109.[23] Wang S, Ren Y C, Rao R Z, et al. Influence of atmospheric scintillation on detection performance of coherent state quantum interferometric radar[J]. Chinese Journal of Lasers, 2018, 45(8): 0810002. 王书, 任益充, 饶瑞中, 等. 大气闪烁对相干态量子干涉雷达探测性能的影响[J]. 中国激光, 2018, 45(8): 0810002.[24] Tao Z W, Wang S, Ren Y C, et al. Influence of phase fluctuation by atmospheric turbulence on phase estimation of coherent state quantum radar[J]. Journal of National University of Defense Technology, 2020, 42(1): 31-37. 陶志炜,王书, 任益充, 等. 大气湍流引起的相位起伏对相干态量子干涉雷达相位估计的影响[J]. 国防科技大学学报, 2020, 42(1): 31-37. |